greg mcshane

a) $(1 - i)^2$

\[(1 - i)^2 = (1 - i)(1 - i)\] \[= 1 \cdot 1 - 1 \cdot i - i \cdot 1 + i^2\] \[= 1 - i - i + (-1)\] \[= (1 - 1) - 2i = -2i\]

Result: $-2i$


c) $(2 + 3i)^2$

\[(2 + 3i)^2 = (2 + 3i)(2 + 3i)\] \[= 2\cdot 2 + 2 \cdot 3i + 3i \cdot 2 + (3i)^2\] \[= 4 + 6i + 6i + 9i^2\] \[= 4 + 12i + 9(-1)\] \[= 4 + 12i - 9\] \[= -5 + 12i\]

Result: $-5 + 12i$


e) $(2 - i)(3 - 4i)$

\[(2 - i)(3 - 4i) = 2 \cdot 3 + 2 \cdot (-4i) + (-i)\cdot 3 + (-i)(-4i)\] \[= 6 - 8i - 3i + 4i^2\] \[= 6 - 11i + 4(-1)\] \[= 6 - 11i - 4\] \[= 2 - 11i\]

Result: $2 - 11i$


✨ Final Answers: