Got it ✅ — GitHub Markdown does not render LaTeX by default (like \sin(\theta)) unless you use inline code or plain text math.
So I’ll rewrite the solution in a GitHub-friendly style:
`...` for inline math.pi/3, sqrt(2)/2 instead of \tfrac{\pi}{3}.\[ or $$).Here’s Exercise 8.1 rewritten for GitHub Markdown:
On cherche les valeurs de sinus et cosinus des angles suivants :
2pi/3, 9pi/2, -9pi/12, -11pi/6, -13pi/4, 7pi/3, -8pi/3.
\pi/3, 9\pi/2, -9\pi/12, -11\pi/6, -13\pi/4, 7\pi/3, -8\pi/3.
2pi/3sin > 0, cos < 0pi - 2pi/3 = pi/3Résultats :
sin(2pi/3) = sqrt(3)/2cos(2pi/3) = -1/29pi/22pi: 9pi/2 = 4pi + pi/2Résultats :
sin(9pi/2) = sin(pi/2) = 1cos(9pi/2) = cos(pi/2) = 0-9pi/12 = -3pi/4sin(-θ) = -sin(θ), cos(-θ) = cos(θ)sin(3pi/4) = sqrt(2)/2, cos(3pi/4) = -sqrt(2)/2Résultats :
sin(-3pi/4) = -sqrt(2)/2cos(-3pi/4) = -sqrt(2)/2-11pi/62pi: -11pi/6 + 2pi = pi/6Résultats :
sin(-11pi/6) = sin(pi/6) = 1/2cos(-11pi/6) = cos(pi/6) = sqrt(3)/2-13pi/4Réduire modulo 2pi:
-13pi/4 + 2pi = -5pi/4-5pi/4 + 2pi = 3pi/4Résultats :
sin(-13pi/4) = sin(3pi/4) = sqrt(2)/2cos(-13pi/4) = cos(3pi/4) = -sqrt(2)/27pi/32pi: 7pi/3 - 2pi = pi/3Résultats :
sin(7pi/3) = sin(pi/3) = sqrt(3)/2cos(7pi/3) = cos(pi/3) = 1/2-8pi/32pi: -8pi/3 + 2pi = -2pi/3sin(-θ) = -sin(θ), cos(-θ) = cos(θ)2pi/3: sin(2pi/3) = sqrt(3)/2, cos(2pi/3) = -1/2Résultats :
sin(-8pi/3) = -sqrt(3)/2cos(-8pi/3) = -1/2| Angle | Sinus | Cosinus |
|---|---|---|
2pi/3 |
sqrt(3)/2 |
-1/2 |
9pi/2 |
1 |
0 |
-3pi/4 |
-sqrt(2)/2 |
-sqrt(2)/2 |
-11pi/6 |
1/2 |
sqrt(3)/2 |
-13pi/4 |
sqrt(2)/2 |
-sqrt(2)/2 |
7pi/3 |
sqrt(3)/2 |
1/2 |
-8pi/3 |
-sqrt(3)/2 |
-1/2 |
Perfect 👍 Let’s rewrite Exercice 8.2 step by step in GitHub-friendly Markdown, just like we did for 8.1.
Exprimer les sinus et cosinus des angles suivants en fonction de sin(pi/5) et cos(pi/5) :
-pi/5, 6pi/5, 9pi/5, 4pi/5, pi/2 - pi/5, 3pi/2 + pi/5.
-pi/5Identités :
sin(-θ) = -sin(θ)cos(-θ) = cos(θ)Résultats :
sin(-pi/5) = -sin(pi/5)cos(-pi/5) = cos(pi/5)6pi/56pi/5 = pi + pi/5Identités :
sin(pi + θ) = -sin(θ)cos(pi + θ) = -cos(θ)Résultats :
sin(6pi/5) = -sin(pi/5)cos(6pi/5) = -cos(pi/5)9pi/59pi/5 = pi + 4pi/5Identités :
sin(pi + θ) = -sin(θ)cos(pi + θ) = -cos(θ)Résultats :
sin(9pi/5) = -sin(4pi/5)cos(9pi/5) = -cos(4pi/5)Et comme sin(4pi/5) = sin(pi - pi/5) = sin(pi/5), cos(4pi/5) = -cos(pi/5) :
sin(9pi/5) = -sin(pi/5)cos(9pi/5) = cos(pi/5)4pi/54pi/5 = pi - pi/5Identités :
sin(pi - θ) = sin(θ)cos(pi - θ) = -cos(θ)Résultats :
sin(4pi/5) = sin(pi/5)cos(4pi/5) = -cos(pi/5)pi/2 - pi/5Identité :
sin(pi/2 - θ) = cos(θ)cos(pi/2 - θ) = sin(θ)Résultats :
sin(pi/2 - pi/5) = cos(pi/5)cos(pi/2 - pi/5) = sin(pi/5)3pi/2 + pi/5Identités :
sin(3pi/2 + θ) = -cos(θ)cos(3pi/2 + θ) = sin(θ)Résultats :
sin(3pi/2 + pi/5) = -cos(pi/5)cos(3pi/2 + pi/5) = sin(pi/5)| Angle | Sinus | Cosinus |
|---|---|---|
-pi/5 |
-sin(pi/5) |
cos(pi/5) |
6pi/5 |
-sin(pi/5) |
-cos(pi/5) |
9pi/5 |
-sin(pi/5) |
cos(pi/5) |
4pi/5 |
sin(pi/5) |
-cos(pi/5) |
pi/2 - pi/5 |
cos(pi/5) |
sin(pi/5) |
3pi/2 + pi/5 |
-cos(pi/5) |
sin(pi/5) |