Got it ✅ — GitHub Markdown does not render LaTeX by default (like \sin(\theta)
) unless you use inline code or plain text math.
So I’ll rewrite the solution in a GitHub-friendly style:
`...`
for inline math.pi/3
, sqrt(2)/2
instead of \tfrac{\pi}{3}
.\[
or $$
).Here’s Exercise 8.1 rewritten for GitHub Markdown:
On cherche les valeurs de sinus et cosinus des angles suivants :
2pi/3
, 9pi/2
, -9pi/12
, -11pi/6
, -13pi/4
, 7pi/3
, -8pi/3
.
\pi/3, 9\pi/2, -9\pi/12, -11\pi/6, -13\pi/4, 7\pi/3, -8\pi/3.
2pi/3
sin > 0
, cos < 0
pi - 2pi/3 = pi/3
Résultats :
sin(2pi/3) = sqrt(3)/2
cos(2pi/3) = -1/2
9pi/2
2pi
: 9pi/2 = 4pi + pi/2
Résultats :
sin(9pi/2) = sin(pi/2) = 1
cos(9pi/2) = cos(pi/2) = 0
-9pi/12 = -3pi/4
sin(-θ) = -sin(θ)
, cos(-θ) = cos(θ)
sin(3pi/4) = sqrt(2)/2
, cos(3pi/4) = -sqrt(2)/2
Résultats :
sin(-3pi/4) = -sqrt(2)/2
cos(-3pi/4) = -sqrt(2)/2
-11pi/6
2pi
: -11pi/6 + 2pi = pi/6
Résultats :
sin(-11pi/6) = sin(pi/6) = 1/2
cos(-11pi/6) = cos(pi/6) = sqrt(3)/2
-13pi/4
Réduire modulo 2pi
:
-13pi/4 + 2pi = -5pi/4
-5pi/4 + 2pi = 3pi/4
Résultats :
sin(-13pi/4) = sin(3pi/4) = sqrt(2)/2
cos(-13pi/4) = cos(3pi/4) = -sqrt(2)/2
7pi/3
2pi
: 7pi/3 - 2pi = pi/3
Résultats :
sin(7pi/3) = sin(pi/3) = sqrt(3)/2
cos(7pi/3) = cos(pi/3) = 1/2
-8pi/3
2pi
: -8pi/3 + 2pi = -2pi/3
sin(-θ) = -sin(θ)
, cos(-θ) = cos(θ)
2pi/3
: sin(2pi/3) = sqrt(3)/2
, cos(2pi/3) = -1/2
Résultats :
sin(-8pi/3) = -sqrt(3)/2
cos(-8pi/3) = -1/2
Angle | Sinus | Cosinus |
---|---|---|
2pi/3 |
sqrt(3)/2 |
-1/2 |
9pi/2 |
1 |
0 |
-3pi/4 |
-sqrt(2)/2 |
-sqrt(2)/2 |
-11pi/6 |
1/2 |
sqrt(3)/2 |
-13pi/4 |
sqrt(2)/2 |
-sqrt(2)/2 |
7pi/3 |
sqrt(3)/2 |
1/2 |
-8pi/3 |
-sqrt(3)/2 |
-1/2 |
Perfect 👍 Let’s rewrite Exercice 8.2 step by step in GitHub-friendly Markdown, just like we did for 8.1.
Exprimer les sinus et cosinus des angles suivants en fonction de sin(pi/5)
et cos(pi/5)
:
-pi/5
, 6pi/5
, 9pi/5
, 4pi/5
, pi/2 - pi/5
, 3pi/2 + pi/5
.
-pi/5
Identités :
sin(-θ) = -sin(θ)
cos(-θ) = cos(θ)
Résultats :
sin(-pi/5) = -sin(pi/5)
cos(-pi/5) = cos(pi/5)
6pi/5
6pi/5 = pi + pi/5
Identités :
sin(pi + θ) = -sin(θ)
cos(pi + θ) = -cos(θ)
Résultats :
sin(6pi/5) = -sin(pi/5)
cos(6pi/5) = -cos(pi/5)
9pi/5
9pi/5 = pi + 4pi/5
Identités :
sin(pi + θ) = -sin(θ)
cos(pi + θ) = -cos(θ)
Résultats :
sin(9pi/5) = -sin(4pi/5)
cos(9pi/5) = -cos(4pi/5)
Et comme sin(4pi/5) = sin(pi - pi/5) = sin(pi/5)
, cos(4pi/5) = -cos(pi/5)
:
sin(9pi/5) = -sin(pi/5)
cos(9pi/5) = cos(pi/5)
4pi/5
4pi/5 = pi - pi/5
Identités :
sin(pi - θ) = sin(θ)
cos(pi - θ) = -cos(θ)
Résultats :
sin(4pi/5) = sin(pi/5)
cos(4pi/5) = -cos(pi/5)
pi/2 - pi/5
Identité :
sin(pi/2 - θ) = cos(θ)
cos(pi/2 - θ) = sin(θ)
Résultats :
sin(pi/2 - pi/5) = cos(pi/5)
cos(pi/2 - pi/5) = sin(pi/5)
3pi/2 + pi/5
Identités :
sin(3pi/2 + θ) = -cos(θ)
cos(3pi/2 + θ) = sin(θ)
Résultats :
sin(3pi/2 + pi/5) = -cos(pi/5)
cos(3pi/2 + pi/5) = sin(pi/5)
Angle | Sinus | Cosinus |
---|---|---|
-pi/5 |
-sin(pi/5) |
cos(pi/5) |
6pi/5 |
-sin(pi/5) |
-cos(pi/5) |
9pi/5 |
-sin(pi/5) |
cos(pi/5) |
4pi/5 |
sin(pi/5) |
-cos(pi/5) |
pi/2 - pi/5 |
cos(pi/5) |
sin(pi/5) |
3pi/2 + pi/5 |
-cos(pi/5) |
sin(pi/5) |