
DIOPHANTINE TRIPLES AND THE PTOLEMY RELATION

GREG MCSHANE

Abstract. We discuss the construction of Diophantine triples from the Farey diagram
and the action of the modular group on the set of such triples.

This is a collaboration with GitHub Copilot and ChatGPT.

1. Introduction

A Diophantine triple is a set of three distinct positive integers A = {a, b, c} such that
the product of any two integers from the set, increased by 1, results in a perfect square.
In other words, for a Diophantine triple {a, b, c}, the following conditions must hold:

ab+ 1 = perfect square(1)

ac+ 1 = perfect square(2)

bc+ 1 = perfect square(3)

Figure 1. A pair of ideal triangles from the farey diagram that are
swapped by the involution z 7→ 1 − z̄. The λ-length of the three cen-
tral semicircles invariant under this involution are respectively 3, 8 and 1.

For example, one well-known Diophantine triple is {1, 3, 8}, because:
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1 + 3× 8 = 52(4)

1 + 3× 1 = 22(5)

1 + 8× 1 = 32(6)

There are also Diophantine quadruples and higher sets. A Diophantine set is a set of
positive integers A with the property that the product of any two distinct elements of A
increased by 1 is a perfect square There is a vast literature, dating back to Diophantus
of Alexandria see the survey by Dujella [4] for an account. The most important result
states that such sets A can have at most five elements, and there are only finitely many
of them with five elements [2].

In this note we give a geometric construction of Diophantine triples using the Farey
diagram and the notion of λ-length due to Penner [9]. The λ-length of each edge of an
ideal triangle in the Farey diagram is 1. We begin with a pair of ideal triangles in the
Farey diagram which are swapped by the involution z 7→ 1 − z̄. The relations (1), (2)
and (3) arise naturally from the Ptolemy relation for an ideal quadrilateral in the Farey
diagram.

1.1. Thanks. It is a pleasure to thank Louis Funar, Hidetoshi Masai, Robert Penner,
Vlad Sergiescu, and Xu Binbin for discussions and suggestions over the years. I thank
Allen Hatcher for his suggestions concerning Figure 2 the code for generating these figures
can be found at [8].

Some of the text of this paper was suggested by GitHub Copilot[13, 14] and ChatGPT.
And finally I thank the referee for their comments and suggestions.

2. Geometry of the Farey diagram

Figure 2. Farey diagram.
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2.1. Farey diagram and λ-lengths. The Farey diagram (see Figure 2) is a geometric
representation of the relationships between rational numbers, closely associated with the
Farey sequence and the Stern–Brocot tree. The Farey diagram is often visualized as
a set of points on the unit circle or as a triangulation of the hyperbolic plane. The
diagram has applications in number theory [10], hyperbolic geometry, and the study of
continuedfractions [11, 12].

It provides a visual and geometric interpretation of how rational numbers are related
to each other, particularly their mediants and properties of the modular group.

2.2. Construction. The Farey diagram can be constructed by representing rational num-
bers as points on the real line viewed as the ideal boundary of the Poincaré half plane H.
Pairs of rational numbers a

c
, b
d

are joined by a Poincaré geodesic (often referred to as an
arc) if the determinant of the matrix (

a b
c d

)
is ±1 and such a pair are called Farey neighbors. The mediant of two fractions a

b
and c

d
is given by:

mediant

(
a

c
,
b

d

)
=
a+ b

c+ d

Note that the mediant of a pair of Farey neighbors is a Farey neighbor of each of them.
A triple of Farey neighbors form the set of vertices of an ideal triangle in the Farey
diagram: for example the triple 1 = 1/1, 2 = 2/1, 3/2 in Figure 1 is an ideal triangle
in the Farey diagram. More generally, if b/d < a/c are Farey neighbors then the triple
b/d < (a+ b)/(c+ d) < a/c are the vertices of an ideal triangle in the Farey diagram.

2.3. Symmetries. The Farey diagram is invariant under the action of the modular group

Γ = PSL(2,Z) < PSL(2,R) = SL(2,R)/{±I}.

An element of PSL(2,Z) acts on the Farey diagram by fractional linear transformations
that is: (

a b
c d

)
· z =

az + b

cz + d
.

The action is transitive on the set of Farey neighbors since the image of ∞ = 1/0 is a/c
and the image of 0 = 0/1 is b/d. The Farey diagram is also invariant under the orientation
reversing involutions

z 7→ −z̄
z 7→ 1− z̄.

Note that these involutions are not conjugate by an element of PSL(2,Z).

2.4. λ-lengths. Penner introduced the notion of λ-length to study the geometry of the
decorated Teichmüller space of a punctured surface [9]. We give an equivalent formulation
for arcs in the half plane H joining pairs of extended rationals a

c
, b
d

and define the λ-length
of an arc to be the absolute value of the determinant of the matrix:(

a b
c d.

)



4 MCSHANE

Although we will not use it here, we note that this has a geometric interpretation: the
λ-length is the exponential of half the length of the portion of the arc outside the Ford
circles tangent at a/c, b/d.

The Ptolemy relation is a classical result from Euclidean geometry that relates the
lengths of the sides and diagonals of a cyclic quadrilateral (a quadrilateral inscribed in
a circle). It states that for any cyclic quadrilateral, the sum of the products of its two
pairs of opposite sides is equal to the product of its diagonals. The relation provides an
important bridge between geometry and algebraic structures, particularly when studying
configurations of points and lengths. Penner proved a version of the Ptolemy relation for
the λ-lengths of the sides of an ideal quadrilateral.

Lemma 2.1. If A,A′ and B,B′ denote the λ-lengths of opposite sides and D,D′ the
λ-lengths of the diagonals of an ideal of an ideal quadrilateral then the Ptolemy relation
is:

A.A′ +B.B′ = D.D′.

Figure 3. The Ptolemy relation for an ideal quadrilateral.

To illustrate this consider one of the ideal quadrilaterals in Figure 1, the quadrilateral
with vertices −1,−1/2, 3/2, 2 say, then the λ-lengths of the sides are B = 8, B′ = 3 and
A = A′ = 1 the diagonals have the same length D = D′ = 5 and so the Ptolemy relation
gives:

1× 1 + 3× 8 = 5× 5,

which is (4) above.

2.5. Main result.

Theorem 2.2. If a/c < (a+ b)/(c+ d) < b/d are a triple of Farey neighbors then

(2b− d)d, (2a− c)c, (2(a+ b)− c− d)(c+ d)

is a Diophantine triple.

This can be checked by direct calculation. For example for the pair (2b− d)d, (2a− c)c
Figure 4 have:

B = (2b− d)d

B′ = (2a− c)c
D = (2ad− cd− 1)

D′ = (2bc− cd+ 1)
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Figure 4. Proof that 1 +B ×B′ is a square.

Note that D −D′ = 0 since ad− bc = 1. Then

B ×B′ = (2b− d)d× (2a− c)c
= 4abcd+ (cd)2 + 2bc2d+ 2acd2

= 4abcd+ (cd)2 − 1 + 2bc2d+ 2acd2 + 2− 1

= 4abcd+ (cd)2 − 1 + 2bc2d+ 2acd2 − cd+ bc+ 2(bc− ad)− 1

= (2ad− cd− 1)(2bc− cd+ 1)− 1

= D ×D′ − 1

Figure 5. The next arc in the family.

3. Families of triples

Fix some integer n that factorises as

(7) n = b(2a− b)
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with a, b a pair of coprime positive integers. By Bézout’s lemma there are positive integers
c, d such that

(8) ad− bc = 1

so that a
b

c
d

are vertices of an arc in the Farey diagram and this arc is an edge of an ideal
triangle whose remaining vertex is the mediant of a

b
c
d
. In fact one a

b
is the vertex of

infinitely many ideal triangles with vertices consecutive elements of the sequence

c+ ka

d+ kb
, k ∈ Z.

By direct calculation one has:

Lemma 3.1. For any k ∈ Z the numbers

n, (d+ kb)(2c− d+ k(2a− b)), (b+ d+ kb)(2(a+ c)− (b+ d) + k(2a− b)),
form a Diophantine triple.

So for example if n = then
b(2a− b) = 1,

has exactly one solution namely a = b = 1.

4. Parity of triples

There are two distinct families of Diophantine triples arising from the Farey diagram:
those such that a, b, c are all multiples of 4 and those which are comprised of odd and
even integers.

Lemma 4.1. The parity modulo 4 of the vertices of each ideal triangle is 0, 1,−1

Proof. Each triangle is adjacent to exactly three others and so it suffices to suppose that
the triangle has the stated parity and check that each of the neighbors has too. �

5. Quadruples

Perhaps the most famous Diophantine quadruple is 1, 3, 8, 120 which is the unique
extension of the triple 1, 3, 8 to a quadruple (see [1]). As we have seen above the triple
1, 3, 8 can be realised geometrically.

The triple 1, 3, 120 cannot be realised geometrically but each of the tuples 1, 120 and
3, 120 can be realised geometrically.

There are exactly two ways (up to sign) of representing 120 by a2 − b2 namely 120 =
112 − 12 and 120 = 132 − 72. Each of these gives rise to a family of triples

n

(
1
0

)
+

(
11
1

)
, m

(
2
1

)
+

(
13
7

)
6. Appendix: realisable ideal triangles

Given a triple a, b, c of real numbers one can ask if there is a triangle with them as
lengths. The answer is yes if and only if the triangle inequality holds that is:

a+ b > c, b+ c > a, c+ a > b.

One can ask the same question for ideal triangles and λ-lengths: given a triple of real
numbers a, b, c ≥ 1 is there an ideal triangle with vertices in the extended rationals that
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has them as λ-lengths. The answer is yes if and only if the greatest common divisors of
the three numbers are equal that is

gcd(a, b, c) = gcd(a, b) = gcd(b, c) = gcd(c, a).

This condition appears in the work of Cuntz, Holm and Jorgensen on Conway-Coxeter
frieze patterns [3].

Lemma 6.1. Let a, b, c ≥ 1 be a triple of integers then there is a rational ideal triangle
with sides of λ-length a, b, c if and only if

gcd(a, b, c) = gcd(a, b) = gcd(b, c) = gcd(c, a).

Proof. Let a, b, c be a triple of numbers satisfying the hypotheses. Since the PSL(2,Z)
action is transitive on the extended rationals we may assume that one of the vertices is
1/0. Without loss of generality we suppose that the arcs asymptotic at 1/0 have λ-lengths
a and b respectively. This of course means that these arcs join 1/0 to some pair of rationals
y/a and x/b. The length of the arc joining this pair is

c = |ax− by|
Evidently c is a multiple of gcd(a, b) and by symmetry one obtains a is a multiple of
gcd(b, c) and b is a multiple of gcd(a, c).

�
why doesn cuntz have a condition on the dyadic evaluation

7. Concluding remarks

We have given a geometric construction of Diophantine triples.One hopes that this will
lead to a better understanding of Diophantine sets and their relation to the modular
group.
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