
MAT402 Année 2020-2021
Feuille d’exercices 1 : révisions, mise en jambe

Autour de la borne supérieure

Comme dans le cours, si f est une fonction d’un ensemble A dans R, on note supA f la borne supérieure
de f(A) = {f(x), x ∈ A}, et infA f sa borne inférieure.

Exercice 1. En fonction du paramètre n ∈ N∗, donner la borne supérieure et la borne inférieure de

l’ensemble Dn =

{
x2 − n2

x2 + n2
, x ∈ R+

}
, si elles existent. Cet ensemble admet-il un plus grand élément,

un plus petit élément ?

Exercice 2. Soit f et g deux fonctions majorées de R dans R. Montrer que supR(f+g) 6 supR f+supR g.

Exercice 3. Soit A = {x ∈ Q|x<
√

2} et f : R → R une fonction continue et croissante. Déterminer
supA f .

Exercice 4. Soit B = Q ∩ ]0, 1[. On considère la fonction g de R dans R donnée par g(x) = x − x3.
Déterminer supB g et infB g.

Exercice 5. Soit (ui,j)i,j∈N une suite numérique dépendant de deux paramètres.
Montrer que sup

i∈N

(
sup
j∈N

(ui,j)
)

= sup
j∈N

(
sup
i∈N

(ui,j)
)
.

Exercice 6. Soit (un)n∈N une suite numérique bornée.
Pour n ∈ N on note Xn = {uk, k > n}, et sn = supXn.

1. Montrer que (sn)n∈N est décroissante

2. Montrer que (sn)n∈N est convergente. On note sa limite lim supun.

3. Définir par analogie la limite inférieure lim inf un.

4. Montrer que, si (un)n∈N converge vers `, alors lim inf un = lim supun = `.

5. Montrer que si lim inf un = lim supun, alors (un)n∈N converge vers leur valeur commune.

6. Déterminer lim supun et lim inf un pour la suite (un)n∈N = (cos(2πn/3))n∈N.

Exercice 7. Soit (un)n∈N une suite bornée de réels. On pose L = lim supun.

1. Soit une suite (an)n∈N convergeant vers a. Déterminer lim sup(an + un) en fonction de a et de L.

2. Si (an)n∈N est seulement bornée, a-t-on lim sup(an + un) = lim sup an + lim supun ?

3. Déterminer lim sup eun en fonction de L.

Exercice 8. Soit une application f de [0, 1] dans [0, 1], croissante. On se propose de montrer qu’il existe
un point fixe de f , c’est-à-dire un x ∈ [0, 1] tel que f(x) = x. (Note : f n’est pas supposée continue. Un
exercice classique est que le résultat est vrai si on remplace le mot “croissante” par le mot “continue”
dans l’hypothèse.)

Pour démontrer le résultat, on considère l’ensemble A des x ∈ [0, 1] tels que f(x) 6 x.

a) Montrer que l’ensemble A n’est pas vide et qu’il a une borne inférieure, qu’on notera α, avec α ∈ [0, 1].
La suite de l’exercice consiste à montrer que α est un point fixe de f .

b) Exploiter la croissance de f pour démontrer :

i) Si x ∈ [0, 1] est un minorant de A, alors f(x) est aussi un minorant de A.

ii) Si x ∈ [0, 1] est un élément de A, alors f(x) est aussi un élément de A.

c) En appliquant le résultat i) précédent au cas x = α, montrer que f(α) 6 α, autrement dit, que α ∈ A.

En appliquant alors le ii) précédent au cas x = α, montrer que f(α) > α, et conclure.

Sur les suites et les séries

Exercice 9. Soit (an)n∈N une suite réelle. Pour chacune des affirmations suivantes, dire si elle est vraie
ou fausse, et le justifier :



1. La suite (an)n∈N tend vers 0 si et seulement si la suite (|an|)n∈N tend vers 0.

2. Si la suite (|an|)n∈N tend vers une limite l, alors la suite (an)n∈N tend vers l ou −l.
3. Si la suite (an)n∈N tend vers une limite l, alors la suite (|an|)n∈N tend vers |l|.

Exercice 10. Déterminer (éventuellement, en fonction du paramètre x ∈ R ou z ∈ C) la nature de
chacune des séries de terme général un défini par :

1) un =
1

(n+ 1)!
2) un =

4n

n!
3) un =

nn

31+2n
4) un = e−n

3−n

5) un =
nn+1

n!
ln
(

1 +
1

n

)
6) un =

(
1 +

1

n

)n
− e 7) un = (−1)n sin

1

n
8) un =

2n

(n+ 2)3n+1

9) un =
x2

x2 + n
10) un =

x2

x2 + n2
11) un = e−nx 12) un = zn

Exercice 11. (Cesaro) Soit (an)n∈N∗ une suite réelle. On veut montrer que si la suite (an)n∈N∗ converge,
vers une limite l, alors la suite des moyennes arithmétiques (bn)n∈N∗ définie par

bn =
1

n
(a1 + ...+ an) converge également, vers la même limite l.

1. Pour tout n0 ∈ N∗, que peut-on dire de la suite (
1

n
(a1 + ...+ an0))n∈N∗ ?

2. Pour tout n ∈ N∗, exprimer bn − l en fonction des ai − l, avec i = 1, ..., n.

3. Soit ε > 0 et des réels x1,..., xk tels que x1, ..., xk ∈]− ε,+ε[. Montrer pour tout entier m > k, on

a
1

m
(x1 + ...+ xk) ∈]− ε,+ε[.

4. Montrer que si la suite (an)n∈N converge vers une limite finie l, alors la suite (bn)n∈N converge
également vers l.

5. La réciproque est-elle vraie ?

6. Que peut-on dire si la suite (an)n∈N∗ tend vers +∞ ?

Exercice 12. Soit (un)n∈N une suite à valeurs dans l’ensemble D = {0, 1, . . . , 9}.
1. Montrer que la série de terme général un · 10−n converge vers un réel x ∈ [0, 10].

2. Montrer que si la suite (un)n∈N converge, alors elle constante à partir d’un certain rang.

3. Montrer que si la suite (un)n∈N converge vers 9, alors il existe une suite (vn)n∈N d’éléments de D
convergeant vers 0 telle que

∑+∞
n=0 un10−n =

∑+∞
n=0 vn10−n.

4. Pour tout x ∈ [0, 10[, montrer qu’il existe une unique suite (un)n∈N ne convergeant pas vers 9
telle que

∑+∞
n=0 un10−n = x.

Exercice 13. On considère la série
∑
n∈A

1

n
où A est l’ensemble des entiers ne contenant pas le chiffre 2

dans leur écriture en base 10. En évaluant pour tout entier n le nombre de termes dans A∩ [10n, 10n+1[,
étudier la nature de cette série.

Exercice 14. Soit a > 0 fixé. On définit la suite de réels (Pn(a))n∈N par

P0(a) = 1, et Pn+1(a) = (n+ a)Pn(a) pour tout n ∈ N.

Il s’agit de montrer que

L(a) = lim
n→∞

Pn(a)

n!na−1

existe et est un nombre strictement positif. Pour cela, on considère la série de terme général un, avec

un = ln(n+ a)− a ln(n+ 1) + (a− 1) lnn.

1. Comparer la somme partielle d’ordre n− 1 de
∑
un avec ln

Pn(a)

n!na−1
.

2. A l’aide d’un développement limité en 1/n d’ordre convenable, montrer que
∑

n∈N∗ un converge.

3. Conclure.


