Intro mod. num. L3 2021

Premier contrôle de connaissances

Exercice 1. Questions de cours.

- 1. Soit n un entier non nul et $x_0, x_1, ..., x_n, n+1$ réels distincts. Pour tout $(y_0, y_1, ..., y_n) \in \mathbb{R}^{n+1}$, montrez qu'il existe un unique polynôme $P \in \mathbb{R}_n[X]$ tel que $P(x_i) = y_i$ pour i = 0, ..., n.
- 2. Soit f une fonction infiniment dérivable sur \mathbb{R} . Proposez deux approximations par différences finies distinctes du nombre dérivé f'(x) pour un $x \in \mathbb{R}$ et un pas h > 0 fixés. On établira soigneusement l'ordre de convergence de chacune de ces deux approximations.

Exercice 2. Matrices de Householder et décomposition QR. Pour $v \in \mathbb{R}^n$ un vecteur ligne de norme 1, on définit la matrice de Householder

$$H^{(v)} = I_n - 2v^T v.$$

- 1. a) Montrez que $H^{(v)}$ est une matrice symétrique et orthogonale.
 - b) Montrez que si $a \in \mathbb{R}^n$ alors $||H^{(v)}(a)|| = ||a||$.
- 2. Pour tout $a \in \mathbb{R}^n$, il existe $\lambda \in \mathbb{R}$ et y orthognal à v uniques tels que $a = \lambda v + y$. Explicitez $H^{(v)}(a)$ en fonction de λ et y.
- 3. Déduire de ce qui précède la transformation géométrique représentée par $H^{(v)}$ (faites un dessin au besoin!).
- 4. Soit $a \in \mathbb{R}^n$ fixé, on souhaite montrer dans cette question qu'il existe v de norme 1 tel que $H^{(v)}(a)$ soit colinéaire au premier vecteur de la base canonique e = (1, 0, ..., 0).
 - a) Montrez que si un tel v existe alors $H^{(v)}(a) = \pm ||a||e$.
 - b) En déduire que v est nécessairement colinéaire à $a \pm ||a||e$.

- c) Démontrez l'existence d'un vecteur v de norme 1 tel que $H^{(v)}(a) = ||a||e$.
- 5. (plus difficile) Déduire par récurence de ce qui précède que pour toute matrice $A \in M_n(\mathbb{R})$, il existe n-1 matrices de Householder telles que

$$H^{(v_{n-1})}H^{(v_{n-2})}\dots H^{(v_1)}A$$

soit triangulaire supérieure à diagonale positive.

6. Pour $A \in M_n(\mathbb{R})$, en déduire l'existence d'une décomposition QR.

Exercice 3. Splines cubiques.

1. Pour $n \geq 2$, on définit la matrice $A_n \in M_n(\mathbb{R})$ par :

$$A_n = \begin{pmatrix} 2 & 1 & 0 & \dots & 0 & 0 \\ 1 & 4 & 1 & 0 & \dots & 0 \\ 0 & 1 & 4 & 1 & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & 1 & 4 & 1 \\ 0 & 0 & \dots & 0 & 1 & 2 \end{pmatrix}.$$

- a) Donner la décomposition LU de la matrice $A_3 = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 4 & 1 \\ 0 & 1 & 2 \end{pmatrix}$.
- b) Soit $n \geq 2$, en supposant que A_n admet une décomposition LU, c'est-à-dire que les pivots lors de l'algorithme de Gauss ne s'annulent jamais, montrer que les coefficients diagonaux d_1, \ldots, d_n de la matrice U dans la décompostion LU de A_n vérifient :

$$\begin{cases} d_1 = 2 \\ d_{k+1} = 4 - \frac{1}{d_k} \\ d_n = 2 - \frac{1}{d_{n-1}} \end{cases} \quad \forall k \in \{1, \dots, n-2\}$$

c) Étudier la suite $(u_n)_{n\geq 1}$ définie par :

$$\begin{cases} u_1 = 2 \\ u_{n+1} = 4 - \frac{1}{u_n} & \forall n \ge 1 \end{cases}$$

(on pourra représenter graphiquement les termes de la suite u_n à l'aide du graphe de la fonction $x \mapsto 4 - \frac{1}{x}$).

- d) En déduire que pour tout $k \in \{0, ..., n-1\}, 2 \le d_k \le 2 + \sqrt{3}$, et que A_n est inversible pour tout $n \ge 2$.
- 2. Soit f une fonction de classe C^1 sur [0,1]. Pour $n \in \mathbb{N}$, on subdivise l'intervalle [0,1] en n intervalles $[x_i,x_{i+1}]$ de longueur égale à $h=\frac{1}{n}$, en notant $x_i=\frac{i}{n}$.
 - a) Soit $(m_0, \ldots, m_n) \in \mathbb{R}^{n+1}$, montrer qu'il existe une unique fonction g de [0,1] dans \mathbb{R} telle que :
 - (i) pour tout $i \in \{1, ..., n\}$, la restriction de g à $[x_{i-1}, x_i]$ est polynomiale de degré ≤ 3
 - (ii) pour tout $i \in \{0, ..., n\}, g(x_i) = f(x_i),$
 - (iii) pour tout $i \in \{1, \dots, n-1\}$, $\lim_{\substack{x \to x_i \\ \leq}} g''(x) = \lim_{\substack{x \to x_i \\ \geq}} g''(x) = m_i$ et $g''(0) = m_0$, $g''(1) = m_1$.
 - b) Montrer que pour tout $i \in \{1, ..., n\}$ et $x \in [x_{i-1}, x_i]$, on a :

$$g(x) = m_{i-1} \frac{(x_i - x)^3}{6h} + m_i \frac{(x - x_i)^3}{6h} + u_i(x - x_{i-1}) + v_i,$$

où u_i et v_i sont des réels que l'on déterminera en fonction de $m_{i-1}, m_i, h, f(x_{i-1})$ et $f(x_i)$.

c) On définit une spline cubique sur [0,1] comme une fonction dont la restriction à tout intervalle $[x_i, x_{i+1}]$ est polynomiale de degré ≤ 3 et qui est de classe C^2 (c'est-à-dire qu'en chaque x_i les valeurs et les dérivées premières et secondes à gauche

et à droite concordent). Montrer que

$$\begin{cases} g \text{ est une spline cubique} \\ g'(0) = f'(0) \\ g'(1) = f'(1) \end{cases} \iff A_{n+1}M = B,$$

$$\begin{cases} g \text{ est une spline cubique} \\ g'(0) = f'(0) \\ g'(1) = f'(1) \end{cases} \iff A_{n+1}M = B,$$
 où $M = \begin{pmatrix} m_0 \\ \vdots \\ m_n \end{pmatrix}$ et B est une matrice colonne dépendant des $f(x_i), f'(0), f'(1)$ et h .

d) En déduire qu'il existe une unique spline cubique g telle que pour tout $i \in \{0, ..., n\}, g(x_i) = f(x_i), g'(0) = f'(0)$ et g'(1) = f'(1).