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1. Introduction

1.1. Chord lengths. The distribution of lengths of chords of convex bodies is a
fundamental problem in integral geometry and has applications to tomography and
x-ray crystallography. The basic question is: does the distribution of chord lengths
determine the convex body up to isometry. By cleverly partitioning the sides of
a regular octagon into two subsets X and Y Mallows and Clark [8] constructed a
pair of convex dodecagons which are not congruent but have the same distribution
of chord lengths. They obtain these dodecahedra by suitably capping off each of
the sides of X (resp. Y ) with a triangle.

What is important in the Mallows Clark construction, as was observed by R.
Garcia-Pelayo [7], is that the configuration of sides in X and Y are associated
to non congruent homometric pairs (NCHP) in the cyclic graph C8. He further
observes that, after applying an isometry of R2 the sets X and Y can be chosen to
be complementary. Garcia-Pelayo goes on to show that any pair of complementary
sets, of a finite vertex transitive graph are in fact homometric thus generalizing a
theorem of A. L. Patterson from the 1940s. Here by pair of complementary sets we
mean a pair of subsets of vertices of the same cardinal whose reunion is the set of
all vertices.

Figure 1. Mallows Clark pair.

1.2. Spanning rulers. In fact, NCHP have been extensively studied in relation
to spanning rulers. A ruler is any finite subset of the positive integers containing
0 and the points of the set are called marks. A spanning ruler is a ruler such that
the distances between (distinct) points are distinct. More informally a regular ruler
consists of the points{0, 1, 2 . . . n} so that the distance 1 can be measured in n− 1
ways (e.g 2 − 1, 3 − 2 etc.) whilst on a spanning ruler each distance that can be
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measured can be done so in exactly one way. An example of a spanning ruler is
0, 1, 4, 6 which measures all the distances 1, 2, 3, 4, 5, 6 just once. There are diverse
applications of spanning rulers ranging from in radio astronomy to x-ray diffraction
crystallography.

In 1939 Sophie Piccard claimed that for any spanning ruler the set of distances
it measures determines it up to isometry or that, equivalently, any ruler from
an NCHP is never a spanning ruler. In the 70’s G. Bloom [3] found an NHCP
which is a counterexample to her claim, namely the pair {0, 1, 4, 10, 12, 17} and
{0, 1, 8, 11, 13, 17}. Subsequently, Bloom-Golomb [4] found an infinite family of
counterexamples each with six marks containing this pair.

1.3. Structure and results. Our principal motivation was an attempt to find
pairs of hyperbolic surfaces that had the same chord distribution which are not
isometric and perhaps not even commensurable (i.e. they have no common cover
of finite degree. Thus, with the exception of Sections 5 and 6 which have some
geometric/topological content most of this text is expository.

We begin (Section 2 and 3) by reformulating Garcia-Pelayo’s result in terms of
auto-correlation functions which will allow us to present a short proof of them. In
Section 4 we discuss a particular family of NHCP using this approach. Further
we construct NCHP which are counterexamples to the questions asked by Garcia-
Pelayo. In particular we find NCHP pairs for n-polygons for n > 15 odd using the
topological ideas introduced in Section 6.

In Section 5 we adapt the construction of Mallows Clark in the hyperbolic setting
yielding examples of non congruent ideal polygons with the same distribution of
lengths of chords. We also construct other pairs of hyperbolic surfaces with the same
distribution of lengths of chords. All our examples are of rather simple topological
type being homeomorphic to annuli. It seems difficult to construct non isometric
examples of pairs of more general surfaces with the same distribution of chord
lengths; see for example the discussion in [9]. Nonetheless even such simple surfaces
have appeared in several papers in the context of hyperbolic geometry and identities
for the Roger’s Dilogarithm [10, 5, 11].

We end the paper with two appendices with which we hope to tempt the reader
to engage further in the problem of construction and classification of NHCP. The
first describes the Mallows-Clark construction for NHCP pairs in geometric terms
and the second Golomb’s algebraic approach using what amounts essentially to
factorisation of the auto-correlation function.

2. Generating and auto-correlation functions

Let G be a connected graph with vertices V (G). There is a natural path metric
on G with distance function d : V (G)×V (G)→ R+ such that for adjacent vertices
v1, v2 ∈ V (G) the distance satisfies d(v1, v2) = 1. It is easy to see that any auto-
morphism of G is an isometry of this metric. To each vertex v ∈ V (G) we associate
a generating series namely

σv(t) =
∑

u∈V (G)

td(v,u).

If (Xi)i is a decomposition of V (G) that is

V (G) =
⊔
i

Xi,
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then σv decomposes as

σv(t) =
∑
i

(∑
u∈Xi

td(v,u)

)
.

More generally define the auto-correlation function of X ⊂ V (G) to be

σX(t) =
1

2

∑
v∈X

σv(t) =
1

2

∑
(v,u)∈X2

td(v,u).

Let G be a connected graph and T a fixed point free automorphism of G then there
is an obvious relation between these series: If X ⊂ V (G) is such that V (G) =
X t T (X) then by letting X := V (G) \X = T (X), we have

σX = σX .

3. Swapping in vertex transitive graphs

Recall that a graph G is vertex transitive iff its automorphism group acts tran-
sitively on the vertices V (G). Note that a vertex transitive graph must be regular,
that is every vertex has the same valence. Since any automorphism is an isometry
of the natural path metric one has, for all u, v ∈ V (G),

σu(t) = σv(t).

Let X be a subset of V (G) and X denote the complement of X. A set Y is obtained
from X by swapping u ∈ X for v ∈ X iff

X = Z ∪ {u}, Y = Z ∪ {v},

where Z = X ∩ Y . Note that Y is obtained from X by swapping v for u since

X = Z ′ ∪ {v}, Y = Z ′ ∪ {u},

where Z ′ = X ∩Y . If X0 and X1 are a pair of finite subsets with the same number
of elements then one can transform X0 into X1 by a finite number of swaps. The
minimal number of swaps is called the Hamming distance.

Theorem 3.1. Let G be a connected finite vertex transitive graph and X ⊂ V (G)
and X denote the complement of X. Then for any subset Y obtained from X by a
finite number of swaps

σX − σX = σY − σY .

Proof. The proof is by induction on the number of swaps.
It is easy to see that it suffices to prove the theorem for a single swap. We present

a proof which is completely formal as follows. There is an obvious decomposition
of the spectral functions:

σX = σZ +
∑
x∈Z

td(u,x) +
1

2

σX = σZ′ +
∑
x∈Z′

td(v,x) +
1

2
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likewise

σY = σZ +
∑
x∈Z

td(v,x) +
1

2

σY = σZ′ +
∑
x∈Z′

td(u,x) +
1

2

Thus

σX − σX = σZ − σZ′ +

(∑
x∈Z

td(u,x) −
∑
x∈Z′

td(v,x)

)
(1)

σY − σY = σZ − σZ′ +

(∑
x∈Z

td(v,x) −
∑
x∈Z′

td(u,x)

)
.(2)

The generating functions also decompose as

σu(t) =
∑
x∈Z

td(u,x) +
∑
x∈Z′

td(u,x) + td(u,v)

σv(t) =
∑
x∈Z

td(v,x) +
∑
x∈Z′

td(v,x) + td(u,v)

By hypothesis σu(t) = σv(t) so subtracting these expressions one sees that the
expressions in parentheses in equations (1) and (2) are equal. �

Corollary 3.2. Let G be a connected finite vertex transitive graph. If σX = σY
then σX = σY .

Proof. By the theorem

σX − σX = σY − σY
= σX − σY

so the result follows. �

Corollary 3.3. Let G be a connected finite vertex transitive graph with 2n vertices.
Suppose G has a fixed point free automorphism T of even order. Then for any subset
of X of n vertices

σX = σX .

Proof. Since T is of even order there exists a subset X0 ⊂ V (G), such that T (X0) =
X0. Further T being a bijection, the sets T (X0) and X0 have the same number of
elements, so in particular X0 must have exactly n elements. Since T is an isometry
of the path metric σX0 = σX0

.

Since V (G) is finite one can transform any other subset X of n element into X0

by a finite number of swaps so it follows from Theorem 3.1 that

0 = σX0
− σX0

= σX − σX .

�



ISOSPECTRAL CONFIGURATIONS IN EUCLIDEAN AND HYPERBOLIC GEOMETRY 5

4. Pairs of subset

Using Corollary 3.3 it is easy to find pairs of sets X and Y such that σX = σY
but which are not congruent. Here we say that X and Y are congruent if there is
an automorphism of G mapping X onto Y . In fact, it is also easy to find pairs of
sets X and Y such that σX = σY and Y is congruent to neither X nor X.

Let G be a cycle of 2n vertices and X a subset of n vertices such that X is not
congruent to X. Let 2G denote the graph obtained from G by subdividing each
edge, it is a cycle of 4n vertices. There is a natural inclusion ι : V (G) ↪→ V (2G)
and, since d(ι(u), ι(v)) = 2d(u, v), one has

σι(X)(t) = σX(t2), σι(X)(t) = σX(t2).

But ι(X) has n vertices and so is not congruent to the complement of ι(X) which
has 3n.

4.1. Homometric configurations on the line. For an n-point configuration
X = {x0, . . . , xn−1} the distance spectrum D(X) is defined as the set

{|xi − xj | | 0 ≤ i < j ≤ n− 1},
counted with multiplicities. It is convenient to label the points so that xi < xi+1

for all 0 ≤ i ≤ n − 1. Two configurations are equivalent if they are related by a
finite sequence of translations, dilations, and reflections of the line. The following
proposition provides us with a recursively defined infinite family of inequivalent
homometric configurations.

Proposition 4.1. For every k ≥ 12, the sets Xk := {0, 1, 5, 6, 7, 9, 10..., k − 4, k −
3, k} and Yk := {0, 4, 5, 6, 9, 10, ..., k−4, k−3, k−1, k} are (k−5)-point inequivalent
homometric configurations.

Proof. Note that

Xk+1 = Xk \ {k} ∪ {k − 2, k + 1}
Yk+1 = Yk \ {k − 1} ∪ {k − 2, k + 1}.

Hence to compute D(Xk+1) \ D(Xk) and D(Yk+1) \ D(Yk), it suffices to deal with
three points in each case. Thus it can be seen that both D(Xk+1) \ D(Xk) and
D(Yk+1) \ D(Yk) consist of the points

{1, 2, . . . , k − 11, k − 9, k − 8, k − 8, k − 4, k − 3, k − 2, k + 1} − {k − 1}.
�

4.2. Configurations of five or less points. It is known that there are no ho-
mometric pairs with less than six points. We give a short proof of this fact for
completeness. Let X = {v1, . . . , v5} be five points on the line arranged in order
according to the index and note that there are exactly 10 elements in the set of
distances D(X). Note that |v5 − v1| is the maximum of D(X) and that, with the
exception of |v5 − v1| and |v4 − v2|, the distances can be paired off (see Figure 2)
so that the sum of a pair is either |v5 − v1| or |v4 − v2| thus:

(3) 2|v4 − v2|+ 4|v5 − v1|. =
∑

l∈D(X)

l

The second largest distance in D(X) is either v5−v2 or v4−v1. and since we know
the value of v4 − v2 from formula (3) above we can determine v2 and v4 and the
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Figure 2. 5 points configuration.

Figure 3. (left) elliptic, (center) parabolic, (right) hyperbolic.

the 6 distances |vi − vj |, i > j, i 6= 4, j 6= 3. After removing these distances there
are 2 pairs of distances involving v3 and we can determine v3 from the equations:

|v3 − v2|+ |v3 − v4| = |v4 − v2|
|v3 − v1|+ |v3 − v5| = |v5 − v1|.

5. Ortho spectrum

We consider the hyperbolic plane H2. Let G be a collection of mutually disjoint
(possibly asymptotic) geodesics. Two such collections are congruent if there is an
isometry which maps one to the other set-wise. An ortho geodesic is a geodesic
each of two endpoints is orthogonal to an element of G. The ortho spectrum O(G)
is the set of the lengths of ortho geodesics counted with multiplicity. For a hyper-
bolic surface with totally geodesic boundary, we get a collection of geodesics as the
boundary of the universal covering, and ortho spectrum is defined to be the one for
those geodesics. In this section, by using Corollary 3.3, we construct examples of
incongruent collections of geodesics with the same ortho spectrum. Some of those
examples also give examples of non-isometric hyperbolic surfaces with the same or-
tho spectrum. In [9], we further discuss systoles and ortho spectrum rigidity. First,
let g be a geodesic, and γ be an isometry which satisfies the following condition.

Condition 5.1. For all i ∈ Z,

• we have either g ∩ γig = ∅ or g = γig, and
• γig’s are in the same component of the complement of g.

Let H be the half space with respect to g that does not contain γig’s. Let G0 be
a collection of disjoint geodesics in H. Then put Gi := γi(G0) for i ∈ Z.
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For two disjoint collections of geodesics H1 and H2, let O(H1,H2) be the lengths
of all ortho geodesics connecting H1 and H2, counted with multiplicity. The fol-
lowing proposition is immediate from the construction.

Proposition 5.2. O(Gi1 ,Gi2) = O(Gj1 ,Gj2) whenever |i1 − i2| = |j1 − j2|.

Let C2n be the cycle graph of length 2n and C̃2n a universal covering of C2n.

We choose a generator t of covering transformation and label V (C̃2n) so that for
each i ∈ Z,

• t(vi) = vi+2n, and
• vi−1 and vi is connected by an edge.

Let X ′ be an n-point subset of V (C2n) and X a lift to C̃2n of X ′.
We define two collections of geodesics by

GX :=
⋃
vi∈X

Gi,

GX :=
⋃
vi∈X

Gi.

Then we have

Theorem 5.3. Two collections GX and GX have the same ortho spectrum, that is
O(GX) = O(GX).

Proof. Let IX := {(i, j) | i < j, vi, vj ∈ X}. If γmg = g for some m, then we only
consider 0 ≤ i < j < m, see also Corollary 5.5 below. The ortho spectrum can be
decomposed as

O(GX) =
⋃
vi∈X

O(Gi) ∪
⋃

(i,j)∈IX

O(Gi,Gj).

Hence by Proposition 5.2, we see that O(GX) is determined by the spectral series of
X. Note that Proposition 5.2 includes the case where |i− j| = 0. By Corollary 3.3,
X and X have the same spectral series and hence we have O(GX) = O(GX). �

Corollary 5.4. There are incongruent collections of geodesics with the same ortho
spectrum.

Proof. Any incongruent pair X ′ and X ′ of n-point subsets of V (C2n) gives a in-
congruent pair of geodesics GX and GX with the same ortho spectra. Incongruent
pairs of n-point subsets of V (C2n) are given in [8, 7]. �

According to the type of the isometry γ, we have three different kinds of exam-
ples. Let HX (resp. HX) be the connected component of H2 \ GX (resp. H2 \ GX)
whose boundary contains whole GX (resp. GX).

Corollary 5.5. There are non-isometric hyperbolic orbifolds with the same ortho
spectrum.

Proof. We suppose that γ is elliptic. Then Condition 5.1 implies that γ is of finite
order. Let m be the smallest integer so that γmg = g. We also consider the case
where γ is identity, or m = 0. We assume that 2n divides m. Both HX and HX

are symmetric with respect to γ2n. Hence HX/〈γ2n〉 and HX/〈γ2n〉 are hyperbolic

orbifolds. It is easy to see that if X and X are incongruent, then HX/〈γ2n〉 and
HX/〈γ2n〉 are non-isometric.
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Corollary 5.6. There are non-isometric hyperbolic surfaces with the same ortho
spectrum.

Proof. We give two kinds of examples. First, suppose γ is parabolic. We assume
that the endpoints at infinity of g are not parabolic fixed point of γ. Then for any
m with 2n|m, HX/〈γm〉 and HX/〈γm〉 are punctured surfaces with the same ortho

spectrum. They are non-isometric whenever X and X are incongruent.
If γ is hyperbolic, we assume that the geodesic axis h does not intersect with g.

Then let H ′ be the half space with respect to h which contains g. Then for any m
with 2n|m, (HX ∩H ′)/〈γm〉 and (HX ∩H ′)/〈γm〉 are hyperbolic surfaces with one
totally geodesic boundary. They have the same ortho spectrum, and again they are
non-isometric whenever X and X are incongruent. �

6. Projecting from Z onto Cn

In this section we show how to get examples of non congruent homometric pairs
of subsets of the cyclic graph on n vertices using covering maps. In particular we
obtain subsets which are not pairs of complementary sets as in Section ??. Further
we find NCHP pairs for n-polygons for n > 15 odd using the topological ideas
introduced in the previous section.

6.1. Distances and covering maps. Let Cn be the cyclic graph on n vertices and
C∞ the connected infinite graph all of whose vertices are valence 2. We can identify
C∞ with the universal cover of Cn and there is a projection map π : C∞ → Cn. One
can view these graphs as Cayley graph of (cyclic) groups in an obvious way: C∞ is
the Cayley graph of (Z,+) with respect to the generator 1 and Cn of (Z/nZ,+).
In this way Z is naturally identified with the vertices of C∞ and Z/nZ with those
of Cn. In particular we can identify the vertices of the latter with 0, 1, . . . n− 1 in
the usual way.

Let xi, yi ∈ C∞, if d(x1, y1) = d(x2, y2) then d(π(x1), π(y1)) = d(π(x2), π(y2)).
Since C∞ is a vertex transitive it suffices to fix x and to check that there is a
function F such that for every vertex y of C∞

d(π(x), π(y)) = F (d(x, y)).

One checks that F is the absolute value of the symmetric remainder for the division
by n. Recall that symmetric remainder is the integer r such that p = qn + r and
|r| < n/2.

6.2. Images of homometric pairs under covering maps. An n point configu-
ration X is a map ιX : {1, 2, . . . n} → Z. It is convenient to work with configurations
as they correspond to subsets of points counted with multiplicities. We say that
a point x of X is a multi point iff {x} is strictly contained in ι−1X ({ιX(x)}). Two
configurations ιX and ιY are isometric iff there exists g an isometry of Z such that
g ◦ ιX = ιY . Any subset of Z can be viewed as a configuration with no multi points.

If X̃, Ỹ is a pair of non congruent homometric subsets of Z then, by the above
discussion, under the projection map π the resulting configurations π(X̃) and π(Ỹ )
are homometric. The examples we obtain by this method fall into three classes:

(1) If n is greater than twice the diameter of X̃ then the restriction of the

projection π to X̃ (resp. Ỹ ) is injective and, moreover, this restriction

maps X̃ isometrically onto π(X̃). Thus in this case we obtain a pair of non
congruent homometric subsets of Cn;
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(2) If n is greater than the diameter of X̃ but less than twice the diameter of

X̃ then the restriction of the projection π to X̃ (resp. Ỹ ) is injective but X̃

is not mapped isometrically onto π(X̃). Thus we obtain a pair of (possibly
congruent) homometric sets of Cn.

(3) If n is less than the diameter of X̃ then the restriction of π is not a priori
injective so we obtain (possibly congruent) homometric configurations.

6.3. An example. The sets X̃ = {0, 2, 5, 14, 18, 25} and Ỹ = {0, 2, 13, 16, 20, 25}
are non congruent homometric subsets of Z and under the projection to Z/nZ for
n = 11, 12, 13, 14 they give configurations each with a single double point. For
n = 15 one obtains a pair of sets X = {0, 2, 3, 5, 10, 14}, Y = {0, 1, 2, 5, 10, 13}.
These sets are not congruent in C15 since the distances between consecutive points
are different: these are respectively 2, 1, 2, 3, 4, 1 and 1, 1, 3, 5, 3, 2.

Thus we obtain a table of pairs of NCHP:

15 0, 2, 3, 5, 10, 14 0, 1, 2, 5, 10, 13
17 0, 1, 2, 5, 8, 14 0, 2, 3, 8, 13, 16
19 0, 2, 5, 6, 14, 18 0, 1, 2, 6, 13, 16
21 0, 2, 4, 5, 14, 18 0, 2, 4, 13, 16, 20
22 0, 2, 3, 5, 14, 18 0, 2, 3, 13, 16, 20
24 0, 1, 2, 5, 14, 18 0, 1, 2, 13, 16, 20

For C21 the two sets we obtain are 0, 2, 4, 5, 14, 18 and 0, 2, 4, 13, 16, 20 for which the
distances between consecutive points are respectively 2,2,1,9,4,3 and 2,2,9,3,4,1. So
these sets are not isometric even though (setwise) these distances between consec-
utive points are the same.

7. Remarks, further questions

As indicated in the introduction, in Section 5 we succeeded in constructing pairs
of hyperbolic surfaces with the same distribution of lengths of chords. Our examples
are of rather simple topological type being homeomorphic to annuli and in particular
what Casson and Bleier [6] refer to as crowns - that is there is a boundary component
that consists of a single closed geodesic and the other boundary is a union of
complete geodesics asymptotic in a finite numberof spikes.
Question: Is it possible to construct a pair of non isometric surfaces, each of
which consists of a pair of crowns identified along the boundary components that
are closed geodesics, but which have a common orthospectrum?

8. Appendix: Structure of homometric pairs

In this section we study the underlying structure of the Mallows-Clark pair
decomposing it into three sets X, Y and P±. Our decomposition will allow us to
show that:

• the Mallows-Clark pair lies in a one parameter family of NCHP of the circle.
• to construct, for each n ≥ 4, NCHP in the n-sphere Sn.
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8.1. Structure of the Mallows-Clark pair. Each of the two configurations
C1, C2 of the Mallows-Clark pair consists of four points and for each of the config-
urations exactly two of these points lie on a diameter of the circle We can apply
a rotation so that C1 ∩ C2 consists of exactly three points: a pair on the diameter
x1, x2 and another point y. The set C1 \ C2 consists of a single point p1 likewise
C2 \ C1 is just p2. One verifies that p1, p2 are also on a diameter. Thus

C1 ∪ C2 = X t Y t P
C1 = X t Y t {p1}
C2 = X t Y t {p2}

where X = {x1, x2}, Y = {y} and P = {p1, p2}.
Let Ant denote the antipodal map of the circle and Refl the unique orientation

reversing map that has y as its fixed point. Both of these maps are isometries of
the circle. Then:

(1) X is invariant under the antipodal map Ant;
(2) Y is invariant under Refl;
(3) P is invariant under both Ant and Refl and each of these maps exchange

p1 and p2 that is

(4) Ant(p1) = p2, Refl(p1) = p2.

Figure 4. One of the configurations of a Mallows-Clark pair. The
black dots are antipodeal pairs. The black triangles is a point
invariant under the reflection Refl. The square is one point of an
antipodeal pair invariant under reflection in the diameter.

It is easy to verify that the configurations are homometric without doing any
calculations as follows. Since C1 ∩ C2 = X t Y it suffices to show that the pairs
X t{p1}, X t{p2} and Y t{p1}, Y t{p2} are isometric (and so homometric). We
have

Ant(X t {p1}) = X t {Ant(p1)}
Refl(Y t {p1}) = Y t {Refl(p1)}
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8.2. Deforming the Mallows-Clark pair. Using the decomposition it is easy to
construct a one parameter family of NCHP as follows.

The antipodeal map commutes with every isometry of the circle and in particular
with the one parameter group of rotations Rt. In particular, if X is invariant under
the antipodeal map then so is Rt(X). For t ∈ R define

Ct1 := Rt(X) t Y t {p1}
Ct2 := Rt(X) t Y t {p2}.

Thus we have a family such that, C0
1 and C0

2 is the original Mallows-Clark pair
and for all t ∈ R the configurations Ct1 and Ct2 are homometric and non conjugate
if Rt(X) is not invariant under Refl.

8.3. Construction of homometric pairs via pairs of involutions. We can
now give a quite general construction for homometric pairs of subsets C1, C2 of a
metric spaceA. It is interesting to note that this construction can be applied to
Euclidean space to obtain pairs such that the Minkowski difference is not the same,
that is

C1 − C1 6= C2 − C2.

where the difference is defined by

X −X := {x− y, x, y ∈ X}.

Theorem 8.1. Let A be a metric space and α1, α2 a pair of involutions of A acting
by isometry.

If X1, X2, P1, P2 are disjoint subsets of A such that for i = 1, 2

αi(Xi) = Xi(5)

αi(P1) = P2(6)

then the sets
Ci := (X1 tX2) t Pi, i = 1, 2

are homometric.
Further if

(1) α1 is the restriction of a unique isometry of A.
(2) X1 is the maximal subset of C1 invariant under α1

(3) X1 is the unique subset of C1 ∪ C2 conjugate to X1

then C1 and C2 are not conjugate.

The conditions in the second part of the theorem are sufficient but not necessary.
They hold for original Mallows Clark pair where α1 is the antipodeal map and X1

the antipodeal pair, that is the unique set of points for which the diameter of Ci is
attained. So X1 is invariant under any conjugation of C1 and C2.

In Paragraph 8.5 we will construct a pair which while not conjugate does not
satisfy these conditions. That is, there is X1 conjugate to different subsets of
X1 ∪ P1. We will exploit this to produce a triple of homometric pairwise non
conjugate configurations.

Proof. The proof of homometry is almost exactly as in Paragraph 8.1. Since C1 ∩
C2 = X1 tX2 it suffices to show that, for i = 1, 2, the pairs Xi t P1, Xi t P2 are
isometric (and so homometric). Consider, as before,

αi(Xi t P1) = Xi t αi(P1)
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Figure 5. The configurations of a generalized Mallows-Clark pair.
The black dots are antipodeal pairs. The black triangles points of
a set invariant under reflection in the horizontal diameter. The
squares are a pair of antipodeal points invariant reflection in the
diameter.

for i = 1, 2, and by hypothesis αi exchanges P1 and P2 so that αi(P1) = P2.
Now suppose that C1 and C2 are conjugate by an (necessarily non trivial) isome-

try α. This isometry conjugates X1 to a subset of C2 so, by hypothesis, α(X1) = X1

and, since α1 is the restriction of a unique isometry,

α(X2 ∪ P1) = α1(X2 ∪ P1) = α1(X2) ∪ P2

so that α1(X2) = X2 contradicting the maximality of X1

�

8.4. Two constructions of (generalized) Mallows-Clark pairs. We now use
Theorem 8.1 to construct the Mallows-Clark pair in two different ways. Let A be
the circle {|z| = 1, z ∈ C} with the induced metric. Now we make two different
choices for the involutions

(1) using the antipodeal map and a reflection α1 : z 7→ −z, α2 : z 7→ z̄;
(2) using a pair of distinct reflections α1 : z 7→ −z̄, α2 : z 7→ z̄ .

Note that all three of these involutions are restrictions of involutions of the complex
plane. For the original Mallows-Clark pair this yields two different families of NCHP
whose intersection consists of those configurations such that P1 ∪P2 lie on the pair
of lines y = ±x.

Corollary 8.2. For either of the choices of involution above the pair of configura-
tions arising from the construction in Theorem 8.1 lies in a real analytic family of
homometric pairs. For almost all values of the parameters the resulting pairs are
non conjugate.

Proof. (Sketch) Existence follows from the theorem. The almost all values part is
a consequence of the fact that the family is real analytic. �

Since the antipodeal map has no fixed points one sees that, for any family ob-
tained from the construction of Corollary 8.2, X1 must have an even number of
elements whilst there is no restriction on the parity of either X2 or the Pi. With
this observation it is easy to see that:
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Figure 6. A (generalized) Mallows-Clark pair in the complex
plane.

Corollary 8.3. For any n ≥ 4 there is a family of homometric pairs on the circle
and for almost all values of the parameters the resulting pairs are non conjugate.

8.5. NCH Triples. In this paragraph we construct a triple of homometric pairwise
non conjugate configurations. Each pair of configurations does not satisfy the
conditions of Theorem 8.1: the set X1 will be conjugate to different subset X ′1
of X1 ∪ P2. The subset X ′1 is invariant under a reflexion α′1 6= α1 and one defines
P ′1 to be (X1 ∪ P2) \X ′1. Then using the construction of Theorem 8.1 one obtains
a set

C3 = X ′1 tX2 t α′1(P ′1).

which is homometric to C2 = X1tX2tP2. This procedure is illustrated in Figure 7
and Figure 8. Since the conditions of the second part of Theorem 8.1 no longer hold
one must verify that the three configurations are pairwise non conjugate. First,
observe that each of the pairwise intersections of the configurations is a unique
antipodeal pair X2 so that, if any pair is conjugate, the conjugation must be the
antipodeal map α2. Now it is easy to see that for the antipodeal map α2(Ci) 6= Cj .

Figure 7. A generalized Mallows-Clark pair associated a reflexion
α1 and the antipodeal map α2. The invariant set of α1 consists of
three black dots and p1 is represented by a black square.
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Figure 8. The set X1 is conjugate to a subset of X ′1 now rep-
resented by black dots in these figures. This new set is invariant
under a different reflection allowing us to construct the third set
of the triple.

9. Appendix: Golomb’s Polynomial Method

For completeness we give an exposition of S. Golomb’s approach (see e.g. [2]) to
NCHP via generating functions.

9.1. Factoring auto-correlation functions. Let X and Y be a NCHP. We sup-
pose that X consists of the points x0 = 0 < x1 < . . . xn = D, where D is the
diameter of X. Golomb associates to X the polynomial of degree D

rX(t) :=
∑
x∈X

td(x0,x)

It is easy to check that

rX(t)rX(1/t) =
∑

(x,y)∈X2

tx−y.

Since X is a subset of R, d(x, y) = |x − y|, and it follows immediately that the
auto-correlation functions σX and σY are equal if and only if

(7) rX(t)rX(1/t) = rY (t)rY (1/t).

Golomb goes on to define

r∗X(t) := tDrX(1/t) =
∑
x∈X

td(xn,x)

and note that X is invariant under reflection if and only if rX = r∗X . Further, the
condition (7) is equivalent to

(8) rXr
∗
X = rY r

∗
Y .

Golomb then made a remarkable observation: the product rX(t)r∗X(t) is a poly-
nomial with integer coefficients and Z[t] is a unique factorisation domain so the
equation (8) tells us that any irreducible factor of rX is either a factor of rY or r∗Y .
Consequently, one has a decomposition of the polynomials into products

rX = gcd(rX , rY )(gcd(rX , r
∗
Y )/ gcd(rY , r

∗
Y ))

rY = gcd(rX , rY )(gcd(rY , r
∗
X)/ gcd(rX , r

∗
X)).
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Note that gcd(rX , r
∗
Y ) = gcd(r∗X , rY ) so that

rX = PQ, rY = PQ∗(9)

where P = gcd(rX , rY ) and Q is the other factor.
Since Z[t1, t2 . . . tn] is a UFD a similar result is true in higher dimensions.

9.2. An example. For example for the NCHP {0, 1, 4, 10, 12, 17} and {0, 1, 8, 11, 13, 17}
cited in the introduction one has the decomposition

rX(t) = 1 + t+ t4 + t10 + t12 + t17 = (t6 + t+ 1)(t11 − t5 + t4 + 1)

rY (t) = 1 + t+ t8 + t11 + t13 + t17 = (t6 + t+ 1)(1− t6 + t7 + t11)

so that gcd(rX , rY ) = t6 + t+ 1 and the other factors form a pair Q and Q∗.
Using the decomposition (9) for n ≥ 9 with at least two factors greater than or

equal to 3, one can construct NCHP with exactly n points quite easily for example:

(t4 + t+ 1)(t7 + t2 + 1) = t11 + t8 + t7 + t6 + t4 + t3 + t2 + t+ 1

(t4 + t3 + 1)(t7 + t2 + 1) = t11 + t10 + t7 + t6 + t5 + t4 + t3 + t2 + 1

9.3. Underlying geometric construction. There is an underlying simple geo-
metric construction which generalises to Rn (see [1] and Figures 9 and 10 below).
We say that a finite set X ⊂ R, asymmetric iff it is not invariant under the inversion
that swaps the minimum and maximum of X, namely

x 7→ −x+ min(X) + max(X).

Let −X denote the set {−x | x ∈ X} as usual and τ the translation x 7→ x+ 1. Let
X0 ⊂]− 1

2 ,
1
2 [ be a set satisfying min(X0) + max(X0) = 0. Note that the diameter

of X0 is in fact 2 max(X0). Then for any X ⊂ Z+ we can form the Minkowski sums

X0 ⊕X = {a+ b | (a, b) ∈ X0 ×X}
(−X0)⊕X = {−a+ b | (a, b) ∈ X0 ×X}.

Under the hypothesis on X0

X0 ⊕X =
⊔
n∈X

τn(X0),(10)

we will say that each translate τn(X0) is a cluster with center n ∈ X. Observe now
that for any pair of clusters τn(X0), τm(X0) in X0 ⊕ X the translation ρ : x 7→
−x+m+n maps them to the clusters to τm(−X0), τn(−X0) in (−X0)⊕X. Using
this observation one can quite easily show that the auto-correlation functions of
X0 ⊕X and (−X0)⊕X are the same.

Moreover, provided both X0 and X are asymmetric, these sets are not congruent.
To see this note that, under our hypothesis on X0,

m = min((−X0)⊕X) = min(X0 ⊕X) = min(X0) + min(X)

Let n0 = min(X) and consider τn0(X0) ⊂ X0 ⊕ X and τn0(−X0) ⊂ (−X0) ⊕ X.
Then one has

min(X0) + min(X) ∈ τn0(X0) ∩ τn0(−X0)

and, since the diameter of X0 is smaller than the minimal distance between distinct
points of X, it follows that

Bm

(
1

2

)
∩ (±X0 ⊕X) = τn0(±X0).
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Figure 9. X0 ⊕X. Figure 10. (−X0)⊕X.

So that if (−X0) ⊕ X = X0 ⊕ X then τn0(X0) = τn0(−X0) contradicting the
hypothesis that X0 was asymmetric. A similar argument can be used to show that
(−X0)⊕X and X0 ⊕X cannot be related by an inversion.

Figures 9 and 10 illustrate an example of homometric sets in R2 obtained from
where X0 = {(0, 0), (1, 0), (0, 1)} and X = 2X0 by this process.

9.3.1. Nine point configurations. Without the hypothesis on the diameter of X0

one cannot guarantee that X0 ⊕X decomposes as a disjoint union of translates as
in (10) above. So, in the general case, one has to deal with so-called multi sets,
that is families of points counted with multiplicities, and the most convenient way
to do this appears to be via polynomials as above.

In order to satisfy the hypothesis that both X0 and X are asymmetric they must
both have at least three points and so the Minkowski sums each have at least nine
points. The construction of homometric configurations with less than nine points
requires much more care as can be seen from the factorisation in the previous section
where one of the factors corresponds to a multiset where one point has a negative
multiplicity

1 + t+ t4 + t10 + t12 + t17 = (t6 + t+ 1)(t11 − t5 + t4 + 1).
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