Chapitre 3

Géométrie et algébre linéaire

Ce chapitre est centré sur les outils et manipulations basiques dans \mathbb{R}^2 ("le plan", en 2 dimensions) et \mathbb{R}^3 ("l'espace", en 3 dimensions).

D'un point de vue mathématique : $\mathbb{R}^2 = \{(x,y), x \in \mathbb{R}, y \in \mathbb{R}\}$ et $\mathbb{R}^3 = \{(x,y,z), x \in \mathbb{R}, y \in \mathbb{R}, z \in \mathbb{R}\}$

3.1 Vecteurs

3.1.1 Définition

Définition Un vecteur \vec{u} (de \mathbb{R}^2 ou de \mathbb{R}^3) est un objet mathématique caractérisé par trois informations :

- une direction
- un sens
- une longueur, appelée norme et notée $\|\vec{u}\|$.

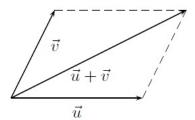
Le **vecteur nul**, noté $\vec{0}$, est l'unique vecteur de norme nulle (il n'a ni direction, ni sens).

Ainsi, deux vecteurs non nuls sont égaux s'ils ont même direction, même sens et même norme.

3.1.2 Opérations sur les vecteurs

Il est possible d'additionner deux vecteurs entre eux, et de multiplier un vecteur par un scalaire (c'est-à-dire un nombre réel).

Addition Soient \vec{u} et \vec{v} deux vecteurs. On construit leur somme $\vec{u}+\vec{v}$ en disposant \vec{u} et \vec{v} tels que l'extrémité de \vec{u} coincide avec l'origine de \vec{v} . Le vecteur $\vec{u}+\vec{v}$ est alors obtenu en reliant l'origine du premier vecteur à l'extrémité du second.



Multiplication par un scalaire Soient $k \in \mathbb{R}$ un réel et \vec{u} un vecteur. Le produit de \vec{u} par k, noté $k \vec{u}$, est le vecteur de norme $||k \vec{u}|| = |k| \cdot ||\vec{u}||$ tel que :

• Si k>0, alors $k\,\vec{u}$ a même direction et même sens que \vec{u}

CHAPITRE 3. GÉOMÉTRIE ET ALGÉBRE LINÉAIRE

- Si k < 0, alors $k \vec{u}$ est de même direction que \vec{u} , mais de sens opposé
- Si k=0, alors $k \, \vec{u}$ est simplement le vecteur nul $\vec{0}$

Cas particulier k=-1: Lorsque l'on multiplie \vec{u} par -1, on obtient le vecteur $-\vec{u}$, appelé le vecteur opposé de \vec{u} . Il a même direction et même norme, mais son sens est l'opposé du sens de \vec{u} . Comme pour les nombres réels, on soustrait un vecteur à un autre en lui ajoutant son opposé : $\vec{u} - \vec{v} = \vec{u} + (-\vec{v})$.

Propriétés Soient \vec{u} , \vec{v} et \vec{w} trois vecteurs et k et l deux réels. On a les propriétés suivantes :

- 1. Commutativité : $\vec{u} + \vec{v} = \vec{v} + \vec{u}$
- 2. Associativité : $\vec{u} + (\vec{v} + \vec{w}) = (\vec{u} + \vec{v}) + \vec{w}$
- 3. Distributivité : $k(\vec{u} + \vec{v}) = k\vec{u} + k\vec{v}$
- 4. Distributivité : $(k+l)\vec{u} = k\vec{u} + l\vec{u}$

Vecteurs colinéaires Deux vecteurs (non nuls) sont dits **colinéaires** s'ils ont même direction (mais pas forcément même sens ni même norme).

Deux vecteurs (non nuls) \vec{u} et \vec{v} sont colinéaires si et seulement s'il existe un réel k tel que $\vec{u} = k\vec{v}$.

3.1.3 Base du plan (vectoriel) \mathbb{R}^2 et de l'espace (vectoriel) \mathbb{R}^3

Définition Soient $\vec{u}_1, \vec{u}_2, \cdots, \vec{u}_n$ des vecteurs. On appelle **combinaison linéaire** de ces vecteurs tout vecteur de la forme $\sum_{k=1}^n \lambda_k \vec{u}_k$ où $\lambda_1, \lambda_2, \dots, \lambda_n$ sont des réels.

Exemples Soient \vec{u} et \vec{v} deux vecteurs.

- ullet $ec{u}-rac{3}{2}ec{v}$ est une combinaison linéaire de $ec{u}$ et $ec{v}$
- $-4\vec{u}$ est une combinaison linéaire de \vec{u} et \vec{v}
- $\|\vec{u}\| + \|\vec{v}\|$ n'est pas une combinaison linéaire de \vec{u} et \vec{v}

Définition Une base du plan \mathbb{R}^2 (resp. de l'espace \mathbb{R}^3) est une famille de 2 vecteurs (resp. 3 vecteurs) telle que tout vecteur \vec{u} de \mathbb{R}^2 (resp. de \mathbb{R}^3) peut s'écrire de manière unique comme une combinaison linéaire des vecteurs de cette famille. Autrement dit :

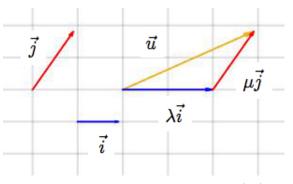
$$(\vec{u}_1, \vec{u}_2)$$
 base de \mathbb{R}^2 \iff \forall $\vec{u} \in \mathbb{R}^2$, $\exists ! \ (\lambda_1, \ \lambda_2)$ réels tels que $\vec{u} = \lambda_1 \vec{u}_1 + \lambda_2 \vec{u}_2$

 λ_1 et λ_2 sont appelées **composantes** ou **coordonnées** de \vec{u} dans la base (\vec{u}_1, \vec{u}_2) et on note $\vec{u} = (\lambda, \mu)$.

De même :

$$(\vec{u}_1,\vec{u}_2,\vec{u}_3) \text{ base de } \mathbb{R}^3 \quad \iff \quad \forall \ \vec{u} \in \mathbb{R}^3, \quad \exists! \ (\lambda_1,\lambda_2,\lambda_3) \text{ réels tels que } \vec{u} = \lambda_1 \vec{u}_1 + \lambda_2 \vec{u}_2 + \lambda_3 \vec{u}_3$$

Géométriquement, comme dans l'exemple ci-contre, définir $(\vec{\imath}, \vec{\jmath})$ comme une base de \mathbb{R}^2 signifie que l'on peut écrire tout vecteur \vec{u} de \mathbb{R}^2 comme la somme de $\lambda \vec{\imath}$ et de $\mu \vec{\jmath}$. Donc, écrire $\vec{u} = \begin{pmatrix} \lambda \\ \mu \end{pmatrix}$ signifie que, pour aller de l'origine de \vec{u} à son extrémité, on se déplace d'une longueur $|\lambda|||\vec{\imath}||$ dans la direction de $\vec{\imath}$ (dans le même sens que $\vec{\imath}$ si λ est positif et dans le sens inverse si λ est négatif) puis d'une longueur $|\mu|||\vec{\jmath}||$ dans la direction de $\vec{\jmath}$ (dans le même sens que $\vec{\jmath}$ si μ est positif et dans le sens inverse si μ est négatif).



Décomposition du vecteur \vec{u} dans la base $(\vec{\imath}, \vec{\jmath})$

Exemple Sur la figure précédente, on remarque que $\vec{u}=2\vec{\imath}+\vec{\jmath}$. Ainsi, 2 et 1 sont les composantes de \vec{u} dans la base $(\vec{\imath},\vec{\jmath})$ et on peut noter $\vec{u}=(2,1)$ ou $\vec{u}=\begin{pmatrix}2\\1\end{pmatrix}$.

Le fait de définir des vecteurs par leurs composantes dans une base permet de les manipuler plus facilement. Les opérations décrites précédemment peuvent se faire à partir des composantes des vecteurs.

Manipulation des vecteurs via leurs coordonnées Dans une base donnée :

- Deux vecteurs sont égaux si et seulement si leurs composantes sont égales.
- Additionner deux vecteurs revient à additionner leurs composantes.
- Multiplier un vecteur par un scalaire revient à multiplier chacune de ses composantes par ce scalaire.

Exemple Dans \mathbb{R}^2 , soit (\vec{e}_1, \vec{e}_2) une base. Soient \vec{u} et \vec{v} deux vecteurs de \mathbb{R}^2 ayant respectivement pour composantes (x, y) et (x', y') dans la base (\vec{e}_1, \vec{e}_2) , et soit k un réel. Alors :

$$(\vec{u} = \vec{v} \iff x = x' \text{ et } y = y')$$
 $k\vec{u} = (kx, ky)$ $\vec{u} + \vec{v} = (x + x', y + y')$

Définition La base la plus usuelle de \mathbb{R}^2 est souvent notée $(\vec{\imath}, \vec{\jmath})$. $\vec{\imath}$ est un vecteur horizontal de longueur 1 orienté vers la droite, et $\vec{\jmath}$ est un vecteur vertical de longueur 1 orienté vers le haut. Elle s'appelle la base canonique.

On a bien sûr de façon similaire une base canonique dans \mathbb{R}^3 , souvent notée $(\vec{\imath}, \vec{\jmath}, \vec{k})$.

Théorème Soient \vec{u}_1 et \vec{u}_2 deux vecteurs non nuls du plan \mathbb{R}^2 . Le couple (\vec{u}_1, \vec{u}_2) forme une base du plan \mathbb{R}^2 si et seulement si \vec{u}_1 et \vec{u}_2 ne sont pas colinéaires.

Exemples

• Les vecteurs $\vec{u}_1=(1,-1)$ et $\vec{u}_2=(3,-3)$ sont colinéaires puisque $\vec{u}_2=3\vec{u}_1$. Ils ont donc même direction, et toute combinaison linéaire de \vec{u}_1 et \vec{u}_2 aura également cette direction. Ces deux vecteurs ne suffisent donc pas pour décrire l'ensemble des vecteurs du plan : le couple (\vec{u}_1,\vec{u}_2) ne forme pas une base de \mathbb{R}^2 .

• Les vecteurs $\vec{v}_1 = (1, -1)$ et $\vec{v}_2 = (0, 1)$ ne sont pas colinéaires (en effet, il n'existe pas de réel k tel que $k\vec{v}_1 = (k, -k)$ soit égal à $\vec{v}_2 = (0, 1)$). Par conséquent, (\vec{v}_1, \vec{v}_2) forme une base du plan \mathbb{R}^2 . Tout $\vec{u} = (x, y)$ de \mathbb{R}^2 peut s'écrire

$$\vec{u} = (x, y) = (x, -x) + (0, x + y) = x(1, -1) + (x + y)(0, 1) = x\vec{v}_1 + (x + y)\vec{v}_2$$

x et x + y sont les composantes de \vec{u} dans la base $(\vec{v_1}, \vec{v_2})$.

La propriété correspondante dans \mathbb{R}^3 est la suivante :

Théorème Soient \vec{u}_1 , \vec{u}_2 et \vec{u}_3 trois vecteurs non nuls de \mathbb{R}^3 . La famille $(\vec{u}_1, \vec{u}_2, \vec{u}_3)$ forme une base de \mathbb{R}^3 si et seulement si les trois vecteurs ne sont pas coplanaires.

3.1.4 Produit scalaire et orthogonalité

On va maintenant définir une opération entre 2 vecteurs, appelée **produit scalaire**, qui est intimement liée aux notions d'orthogonalité et de norme (longueur d'un vecteur).

Définition Soient \vec{u} et \vec{v} deux vecteurs de \mathbb{R}^2 ayant respectivement pour composantes (x,y) et (x',y') dans la base canonique $(\vec{\imath},\vec{\jmath})$. Le **produit scalaire** entre \vec{u} et \vec{v} , noté $\vec{u}\cdot\vec{v}$ ou $\langle\vec{u},\vec{v}\rangle$, est le réel défini par

$$\vec{u} \cdot \vec{v} = xx' + yy'$$

De même, pour \vec{u} et \vec{v} deux vecteurs de \mathbb{R}^3 ayant respectivement pour composantes (x,y,z) et (x',y',z') dans la base canonique $(\vec{\imath},\vec{\jmath},\vec{k})$, leur produit scalaire est donné par

$$\vec{u} \cdot \vec{v} = xx' + yy' + zz'$$

Les règles de calcul du produit scalaire sont très semblables à celles de la multiplication des nombres réels.

Règles d'utilisation du produit scalaire Soient \vec{u} , \vec{v} et \overrightarrow{w} trois vecteurs et λ un nombre réel.

- Le produit scalaire est **symétrique** (ou commutatif) : $\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$
- Le produit scalaire est **bilinéaire** : $\vec{u} \cdot (\vec{v} + \overrightarrow{w}) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \overrightarrow{w}$ $(\vec{u} + \vec{v}) \cdot \overrightarrow{w} = \vec{u} \cdot \vec{v} + \vec{u} \cdot \overrightarrow{w}$ $\vec{u} \cdot (\lambda \vec{v}) = (\lambda \vec{u}) \cdot \vec{v} = \lambda (\vec{u} \cdot \vec{v})$

En particulier, le produit scalaire d'un vecteur \vec{u} avec le vecteur nul $\vec{0}$ donne toujours le scalaire 0.

Exemple On peut exprimer $(7\vec{u} - \vec{v}) \cdot (4\vec{u} + 3\vec{v})$ en fonction de $\vec{u} \cdot \vec{u}$, $\vec{v} \cdot \vec{v}$ et $\vec{u} \cdot \vec{v}$:

$$\begin{array}{lll} (7\vec{u} - \vec{v}) \cdot (4\vec{u} + 3\vec{v}) & = & (7\vec{u}) \cdot (4\vec{u} + 3\vec{v}) - \vec{v} \cdot (4\vec{u} + 3\vec{v}) \\ & = & (7\vec{u}) \cdot (4\vec{u}) + (7\vec{u}) \cdot (3\vec{v}) - \vec{v} \cdot (4\vec{u}) - \vec{v} \cdot (3\vec{v}) \\ & = & 28 \, \vec{u} \cdot \vec{u} + 21 \, \vec{u} \cdot \vec{v} - 4 \, \vec{v} \cdot \vec{u} - 3 \, \vec{v} \cdot \vec{v} \\ & = & 28 \, \vec{u} \cdot \vec{u} + 17 \, \vec{u} \cdot \vec{v} - 3 \, \vec{v} \cdot \vec{v} \end{array}$$

Plus généralement, on peut décrire géométriquement le produit scalaire de la façon suivante :

Théorème Soient \vec{u} et \vec{v} deux vecteurs. On note θ une mesure de l'angle orienté entre \vec{u} et \vec{v} (déterminée à un multiple de 2π près). Alors

$$\vec{u} \cdot \vec{v} = \|\vec{u}\| \, \|\vec{v}\| \, \cos \theta$$

En particulier, on voit que $\vec{u} \cdot \vec{u} = \|\vec{u}\|^2 \cos 0 = \|\vec{u}\|^2$. Donc la norme d'un vecteur est égale à $\|\vec{u}\| = \sqrt{\vec{u} \cdot \vec{u}}$.

Comme une norme est toujours positive, le signe du produit scalaire est le même que celui de $\cos \theta$. Le signe du produit scalaire permet donc de déterminer si l'angle géométrique entre les vecteurs \vec{u} et \vec{v} est aigu ($\cos \theta > 0$) ou obtus ($\cos \theta < 0$). On a aussi notamment la propriété suivante :

Théorème Deux vecteurs non nuls \vec{u} et \vec{v} sont **orthogonaux** (directions données par deux droites perpendiculaires, ce qui signifie $\theta = \frac{\pi}{2}$) si et seulement si $\vec{u} \cdot \vec{v} = 0$.

Géométriquement, le produit scalaire est très lié à la notion de **projection orthogonale**. Si l'on remplace \vec{u} et \vec{v} par \overrightarrow{AB} et \overrightarrow{AC} dans la relation $\vec{u} \cdot \vec{v} = \|\vec{u}\| \|\vec{v}\| \cos \theta$, on obtient la formuation suivante :

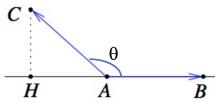
Théorème Soient \overrightarrow{A} , \overrightarrow{B} et \overrightarrow{C} trois points distincts du plan, et \overrightarrow{H} le projeté orthogonal de C sur la droite (AB). Alors $\overrightarrow{AB} \cdot \overrightarrow{AC} = \overrightarrow{AB} \cdot \overrightarrow{AH}$, et

- 1. si H est sur la demi-droite [A,B) (angle aigu), alors on a $\overrightarrow{AB} \cdot \overrightarrow{AC} = \|\overrightarrow{AB}\| \|\overrightarrow{AH}\|$
- 2. sinon (angle obtus), on a $\overrightarrow{AB} \cdot \overrightarrow{AC} = -\|\overrightarrow{AB}\| \|\overrightarrow{AH}\|$

Cas 1 : angle aigu (θ <90°)

 θ R H

Cas 2 : angle obtus $(\theta > 90^{\circ})$



Définition Une base de \mathbb{R}^2 ou de \mathbb{R}^3 est dite orthogonale lorsque tous les vecteurs qui la composent sont deux à deux orthogonaux.

Une base orthogonale de \mathbb{R}^2 ou de \mathbb{R}^3 est dite **orthonormée** lorsqu'en plus tous les vecteurs qui la composent sont de norme 1.

Exemple La base canonique $(\vec{\imath}, \vec{\jmath})$ de \mathbb{R}^2 est une base orthonormée.

En effet, on a $\vec{\imath}=(1,0)$ et $\vec{\jmath}=(0,1)$. Donc $\vec{\imath}\cdot\vec{\jmath}=1\times 0+0\times 1=0$: $(\vec{\imath},\vec{\jmath})$ forme une base orthogonale. De plus $\|\vec{\imath}\|=\sqrt{\vec{\imath}\cdot\vec{\imath}}=\sqrt{1\times 1+0\times 0}=1$ et $\|\vec{\jmath}\|=\sqrt{\vec{\jmath}\cdot\vec{\jmath}}=\sqrt{0\times 0+1\times 1}=1$. Donc $(\vec{\imath},\vec{\jmath})$ est une base orthonormée.

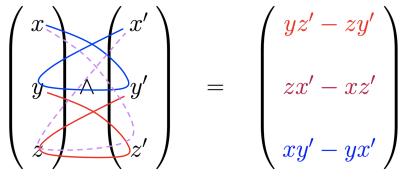
3.1.5 Produit vectoriel de 2 vecteurs de \mathbb{R}^3

Le **produit vectoriel** est une opération qui, à deux vecteurs de \mathbb{R}^3 , associe un troisième vecteur de \mathbb{R}^3 qui a la propriété d'être orthogonal aux deux premiers.

Définition Soient $\vec{u}=(x,y,z)$ et $\vec{v}=(x',y',z')$ deux vecteurs de \mathbb{R}^3 . On appelle **produit** vectoriel de $\vec{u}=(x,y,z)$ et $\vec{v}=(x',y',z')$, noté $\vec{u}\wedge\vec{v}$, de composantes (yz'-zy',zx'-xz',xy'-yx').

Exemple Pour $\vec{u} = (1, 2, 3)$ et $\vec{v} = (2, 2, 1)$, on a donc :

$$\vec{u} \wedge \vec{v} = (2 \times 1 - 3 \times 2, 3 \times 2 - 1 \times 1, 1 \times 2 - 2 \times 2) = (-4, 5, -2)$$



Calcul pratique d'un produit vectoriel : la première composante de $\vec{u} \wedge \vec{v}$ est obtenue en ignorant la première ligne des vecteurs et en faisant le produit en croix des 2 autres (calcul en rouge) ; la deuxième composante de $\vec{u} \wedge \vec{v}$ est obtenue en ignorant la deuxième ligne des vecteurs et en faisant le produit en croix des 2 autres, en changeant le signe (calcul en mauve) ; la troisième composante de $\vec{u} \wedge \vec{v}$ est obtenue en ignorant la troisième ligne des vecteurs et en faisant le produit en croix des 2 autres (calcul en bleu).

Règles d'utilisation du produit vectoriel

- Le produit vectoriel est **antisymétrique** : $\vec{v} \wedge \vec{u} = -\vec{u} \wedge \vec{v}$
- Le produit vectoriel est **bilinéaire** : $\vec{u} \wedge (\vec{v} + \vec{w}) = \vec{u} \wedge \vec{v} + \vec{u} \wedge \vec{w}$ $(\vec{u} + \vec{v}) \wedge \vec{w} = \vec{u} \wedge \vec{v} + \vec{u} \wedge \vec{w}$ $\vec{u} \wedge (\lambda \vec{v}) = (\lambda \vec{u}) \wedge \vec{v} = \lambda (\vec{u} \wedge \vec{v})$

Théorème Soient \vec{u} et \vec{v} deux vecteurs. On note θ une mesure de l'angle orienté entre \vec{u} et \vec{v} (déterminée à un multiple de 2π près). Alors

$$\|\vec{u} \wedge \vec{v}\| = \|\vec{u}\| \|\vec{v}\| |\sin \theta|$$

Propriétés Les définitions et propriétés précédentes impliquent :

- $\vec{u} \wedge \vec{v}$ est orthogonal à \vec{u} et à \vec{v} : $(\vec{u} \wedge \vec{v}) \cdot \vec{u} = (\vec{u} \wedge \vec{v}) \cdot \vec{v} = 0$
- Si \vec{u} et \vec{v} sont deux vecteurs de \mathbb{R}^3 orthogonaux entre eux, alors $(\vec{u}, \vec{v}, \vec{u} \wedge \vec{v})$ est une base orthogonale de \mathbb{R}^3 .
- Deux vecteurs \vec{u} et \vec{v} de \mathbb{R}^3 sont colinéaires si et seulement si $\vec{u} \wedge \vec{v} = \vec{0}$.

3.2 Déterminants

Le **déterminant** est un opérateur qui, à n vecteurs de \mathbb{R}^n , associe un nombre réel. Il a la propriété d'être égal à 0 si et seulement si l'un des vecteurs est une combinaison linéaire des autres (on dit aussi : "la famille de n vecteurs est linéairement dépendante", ou "la famille de n vecteurs est linéairement dépendante", ou "la famille de n vecteurs est linéairement dépendante", ou "la famille de n vecteurs est linéairement dépendante".

On ne va traiter ici que le déterminant en dimension 2 et en dimension 3.

3.2.1 Déterminant de 2 vecteurs de \mathbb{R}^2

Définition Soient \vec{u} et \vec{v} deux vecteurs de \mathbb{R}^2 ayant respectivement pour composantes (x,y) et (x',y') dans la base canonique $(\vec{\imath},\vec{\jmath})$. Alors le **déterminant** entre \vec{u} et \vec{v} , noté $\det(\vec{u},\vec{v})$, est le réel défini par

$$\det(\vec{u}, \vec{v}) = \begin{vmatrix} x & x' \\ y & y' \end{vmatrix} = xy' - yx' \qquad \text{("produit en croix" de } \vec{u} \text{ et } \vec{v}\text{)}$$

Règles d'utilisation du déterminant 2×2

Soient \vec{u} , \vec{v} et \overrightarrow{w} trois vecteurs de \mathbb{R}^2 et λ un nombre réel. La définition du déterminant implique les règles suivantes :

- $\det(\vec{u}, \vec{v}) = -\det(\vec{v}, \vec{u})$ (attention : inverser les 2 vecteurs change le signe du déterminant)
- $\det(\vec{u}, \vec{v} + \vec{w}) = \det(\vec{u}, \vec{v}) + \det(\vec{u}, \vec{w})$
- $\det(\vec{u}, \lambda \vec{v}) = \det(\lambda \vec{u}, \vec{v}) = \lambda \det(\vec{u}, \vec{v})$ (et donc $\det(\lambda \vec{u}, \mu \vec{v}) = \lambda \mu \det(\vec{u}, \vec{v})$)
- **Théorème** Deux vecteurs \vec{u} et \vec{v} de \mathbb{R}^2 sont colinéaires si et seulement si $\det(\vec{u}, \vec{v}) = 0$.

Exemple Soient les vecteurs $\vec{u} = (m,4)$ et $\vec{v} = (1,m)$ où m est un réel. Déterminer à quelle condition sur m les vecteurs sont colinéaires.

Le déterminant entre \vec{u} et \vec{v} vaut $\det(\vec{u},\vec{v}) = \left| \begin{array}{c} m & 1 \\ 4 & m \end{array} \right| = m^2 - 4$. L'équation $\det(\vec{u},\vec{v}) = m^2 - 4 = 0$ admet deux solutions m=2 et m=-2. Ainsi, les vecteurs \vec{u} et \vec{v} sont colinéaires pour m=2 ou m=-2. Dans le premier cas, on a $\vec{u}=2\vec{v}$ et dans le deuxième cas $\vec{u}=-2\vec{v}$. Dans les 2 cas, \vec{u} et \vec{v} sont donc bien proportionnels.

Théorème Soient A, B et C trois points du plan \mathbb{R}^2 . L'aire du triangle ABC vaut $\frac{1}{2} \left| \det(\overrightarrow{AB}, \overrightarrow{AC}) \right|$. (Les formules usuelles d'aire et volume sont rappelées en Annexe A.)

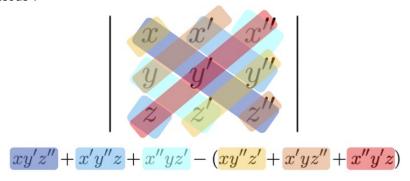
3.2.2 Déterminant de 3 vecteurs de \mathbb{R}^3

Définition Soient \vec{u} de composantes (x,y,z), \vec{v} de composantes (x',y',z') et \vec{w} de composantes (x'',y'',z'')trois vecteurs de \mathbb{R}^3 . Alors le **déterminant** entre \vec{u} , \vec{v} et \vec{w} , noté $\det(\vec{u},\vec{v},\vec{w})$, est le réel défini par :

$$\det(\vec{u}, \vec{v}, \vec{w}) = \begin{vmatrix} x & x' & x'' \\ y & y' & y'' \\ z & z' & z'' \end{vmatrix} = x \begin{vmatrix} y' & z' \\ y'' & z'' \end{vmatrix} - y \begin{vmatrix} x' & x'' \\ z' & z'' \end{vmatrix} + z \begin{vmatrix} x' & x'' \\ y' & y'' \end{vmatrix}$$
$$= xy'z'' + x'y''z + x''yz' - (xy''z' + x'yz'' + x''y'z)$$

Il y a en fait plusieurs possibilités pour exprimer ce déterminant 3×3 en fonction de sous-déterminants 2×2 , mais on aboutit bien sûr toujours à la même expression finale ci-dessus.

On remarque qu'il s'agit d'une somme et différence de produits de 3 termes appartenant chacun à une ligne et une colonne différente. Cette expression finale développée peut être retrouvée grâce à la règle de Sarrus ci-dessous :



Calcul pratique d'un déterminant 3×3 par la règle de Sarrus Moyen mnémotechnique : "SE-NE", c'est-à-dire "sud-est moins nord-est" : on ajoute les produits de 3 termes orientés vers le sud-est, et on retranche les produits de 3 termes orientés vers le nord-est.

Enfin, on peut aussi remarquer que $\det(\vec{u}, \vec{v}, \vec{w}) = (\vec{u} \wedge \vec{v}) \cdot \vec{w}$.

Règles d'utilisation du déterminant 3×3

Soient \vec{u} , \vec{v}' , \vec{v} et \vec{w} trois vecteurs de \mathbb{R}^3 et λ un nombre réel. La définition du déterminant implique les règles suivantes, identiques à celles du déterminant 2×2 :

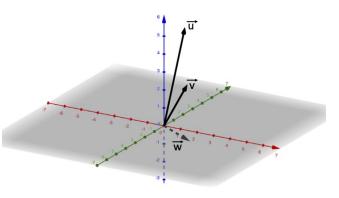
- inverser 2 vecteurs change le signe du déterminant. Ainsi par exemple $\det(\vec{u}, \vec{v}, \vec{w}) = -\det(\vec{v}, \vec{u}, \vec{w}) = -\det(\vec{v}, \vec{v}, \vec{v}) = -\det(\vec{v}, \vec{v}, \vec{v})$ (il y a à chaque fois une inversion de vecteurs), et $\det(\vec{u}, \vec{v}, \vec{w}) = \det(\vec{v}, \vec{u}, \vec{v}) = \det(\vec{v}, \vec{v}, \vec{v})$ (car ces cas correspondent à 2 inversions successives de vecteurs)
- addition de 2 vecteurs : $\det(\vec{u} + \vec{u}', \vec{v}, \vec{w}) = \det(\vec{u}, \vec{v}, \vec{w}) + \det(\vec{u}', \vec{v}, \vec{w})$
- multiplication d'un des vecteurs par un nombre réel : $\det(\lambda \vec{u}, \vec{v}, \vec{w}) = \lambda \det(\vec{u}, \vec{v}, \vec{w})$

Théorème Trois vecteurs \vec{u} , \vec{v} et \vec{w} de \mathbb{R}^3 sont coplanaires (c'est-à-dire linéairement dépendants : on peut exprimer un des vecteurs comme combinaison linéaire des 2 autres) si et seulement si $\det(\vec{u}, \vec{v}, \vec{w}) = 0$.

Exemple Pour
$$\vec{u}=\begin{pmatrix}3\\-3\\7\end{pmatrix}$$
, $\vec{v}=\begin{pmatrix}2\\-1\\3\end{pmatrix}$ et $\vec{w}=\begin{pmatrix}1\\1\\-1\end{pmatrix}$, on a

$$\det(\vec{u},\vec{v},\vec{w}) = \begin{vmatrix} 3 & 2 & 1 \\ -3 & -1 & 1 \\ 7 & 3 & -1 \end{vmatrix} = 3 - 9 + 14 - (-7 + 6 + 9) = 8 - 8 = 0 \qquad \textit{(par la règle de Sarrus)}$$

Le déterminant étant nul, cela indique qu'il existe une combinaison linéaire nulle des 3 vecteurs (c'est-à-dire que l'un des vecteurs peut être exprimé comme combinaison linéaire des deux autres). En effet, on peut remarquer ici que $\vec{u} = 2\vec{v} - \vec{w}$, et donc que les 3 vecteurs sont dans un même plan, comme on peut le voir sur le dessin ci-contre.



Théorème Soient A, B, C et D quatre points de l'espace \mathbb{R}^3 . Le volume du tétraèdre ABCD $\mathsf{vaut} \ \frac{1}{6} \ \Big| \mathrm{det}(\overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AD}) \Big|$

(Les formules usuelles d'aire et volume sont rappelées en Annexe A.)

3.2.3 Lien avec les systèmes linéaires

On a vu que le déterminant de n vecteurs de \mathbb{R}^n est égal à 0 si et seulement si l'un des vecteurs est une combinaison linéaire des autres. Une application de cette propriété concerne les systèmes linéaires.

Théorème Un système linéaire de n équations à n inconnues a une et une seule solution si et seulement si son déterminant est différent de 0. Dans le cas contraire, il admet soit aucune solution, soit une infinité de solutions.

- $\bullet \ \ \textit{Considérons le système} \left\{ \begin{array}{ll} 2x-y & = & 3 & (1) \\ x+3y & = & -2 & (2) \end{array} \right. \quad \textit{Son déterminant vaut} \ \left| \begin{array}{ll} 2 & -1 \\ 1 & 3 \end{array} \right| = 6 (-1) = 7.$ Il est différent de 0, donc le système admet une solution unique. En l'occurence, la combinaison $3 \times (1) + (2)$ donne 7x = 7, donc x = 1. D'où y = 1 en remplaçant x par 1 dans (1) ou (2).

indique que le système n'admet pas une solution unique. En effet, on peut voir que (3) - (1)fournit l'équation x-2y=-2, qui est incompatible avec (2). Il n'y a donc pas de solution à ce système.

3.3 Géométrie élémentaire en dimensions 2 et 3

On va ici s'intéresser au plan affine et à l'espace affine, c'est-à-dire \mathbb{R}^2 et \mathbb{R}^3 vus comme des ensembles de points.

3.3.1 Repère cartésien - Coordonnées d'un point

Définition Un repère cartésien du plan (respectivement : de l'espace) est formé d'un point O (l'origine du repère) et d'une base de \mathbb{R}^2 (respectivement de \mathbb{R}^3).

Dans un repère cartésien $(O; \vec{\imath}, \vec{\jmath})$ du plan, on dit que le point M défini par $\overrightarrow{OM} = x\vec{\imath} + y\vec{\jmath}$ a pour coordonnées (x,y), et on note M(x,y).

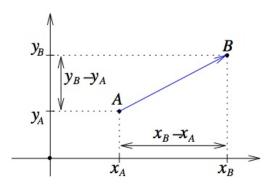
Dans un repère cartésien $(O; \vec{\imath}, \vec{\jmath}, \vec{k})$ de l'espace, on dit que le point M défini par $\overrightarrow{OM} = x\vec{\imath} + y\vec{\jmath} + z\vec{k}$ a pour coordonnées (x, y, z), et on note M(x, y, z).

Ainsi, nous pouvons déterminer les composantes d'un vecteur à partir des coordonnées des deux points qui définissent ce vecteur :

Théorème Soit $(O; \vec{\imath}, \vec{\jmath})$ un repère cartésien du plan. Soient $A(x_A, y_A)$ et $B(x_B, y_B)$ deux points du plan. Les composantes du vecteur \overrightarrow{AB} dans la base $(\vec{\imath}, \vec{\jmath})$ sont données par

$$\overrightarrow{AB} = (x_B - x_A, y_B - y_A)$$

On a bien sûr la même relation dans \mathbb{R}^3 , avec $A(x_A,y_A,z_A)$, $B(x_B,y_B,z_B)$, et $\overrightarrow{AB}=(x_B-x_A,y_B-y_A,z_B-z_A)$.

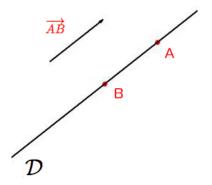


Exemple Soit $(O; \vec{\imath}, \vec{\jmath})$ un repère du plan et soient A(1,1), B(4,2), C(5,0) et D(2,-1) quatre points du plan. Les composantes de \overrightarrow{AB} dans la base $(\vec{\imath}, \vec{\jmath})$ sont $\overrightarrow{AB} = (4-1,2-1) = (3,1)$. Les composantes de \overrightarrow{DC} dans la base $(\vec{\imath}, \vec{\jmath})$ sont $\overrightarrow{DC} = (5-2,0-(-1)) = (3,1)$. On remarque que $\overrightarrow{AB} = \overrightarrow{DC}$, ce qui signifie que le quadrilatère ABCD est un parallélogramme.

3.3.2 Géométrie élémentaire dans le plan affine (dimension 2)

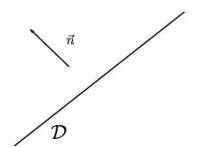
3.3.2.1 Vecteur directeur et vecteur normal à une droite

Définition On appelle vecteur directeur d'une droite \mathcal{D} tout vecteur \overrightarrow{AB} où A et B sont deux points distincts de \mathcal{D} . Ainsi un vecteur directeur détermine la direction d'une droite.



Remarque Pour une droite donnée, il existe une infinité de vecteurs directeurs. Tous ces vecteurs directeurs sont colinéaires entre eux.

Définition On appelle **vecteur normal** d'une droite $\mathcal D$ tout vecteur directeur $\vec n$ d'une droite perpendiculaire à $\mathcal D$



 \vec{n} est donc perpendiculaire à tout vecteur directeur de \mathcal{D} .

Remarque Là encore, pour une droite donnée, il existe une infinité de vecteurs normaux, tous colinéaires entre eux.

3.3.2.2 Equation d'une droite dans le plan

On va expliciter ici les deux façons principales d'exprimer une droite dans le plan affine : par une **équation cartésienne** ou sous une **forme paramétrique**.

Définition Soient α , β et γ trois réels tels que $(\alpha, \beta) \neq (0, 0)$ (i.e. au moins un des deux n'est pas nul). Alors l'ensemble des points du plan \mathbb{R}^2 défini par

$$\mathcal{D} = \{ M(x, y); \ \alpha x + \beta y + \gamma = 0 \}$$

est une droite. On dit que l'équation $\alpha x + \beta y + \gamma = 0$ est une **équation cartésienne** de cette droite.

Notons que cette caractérisation n'est pas unique puisque, par exemple, $2\alpha x + 2\beta y + 2\gamma = 0$ est aussi une équation cartésienne de la même droite.

Remarque Si $\beta=0$ l'équation se ramène à x=r avec $r=-\gamma/\alpha$ (puisque $\alpha\neq 0$) : c'est une droite parallèle à l'axe Oy. Si $\beta\neq 0$, l'équation se ramène à y=ax+b avec $a=-\alpha/\beta$ et $b=-\gamma/\beta$, ce qui une forme très souvent utilisée pour caractériser une droite. L'équation cartésienne a l'avantage de couvrir les 2 cas, sans caractériser différemment les droites parallèles à l'axe des ordonnées.

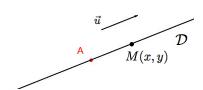
Théorème Toute droite \mathcal{D} du plan admet une équation cartésienne de la forme $\alpha x + \beta y + \gamma = 0$ où $(\alpha, \beta, \gamma) \in \mathbb{R}^3$, avec $(\alpha, \beta) \neq (0, 0)$.

 $\vec{n} = (\alpha, \beta)$ est un vecteur normal à \mathcal{D} (et donc $\vec{u} = (\beta, -\alpha)$ est un vecteur directeur de \mathcal{D}).

On peut aussi remarquer que pour définir une droite $\mathcal D$ du plan, il suffit en fait d'un point $A(x_A,y_A)$ appartenant à $\mathcal D$ et d'un vecteur directeur $\vec u=(x_{\vec u},y_{\vec u})$ de $\mathcal D$. Ces deux informations permettent notamment d'obtenir une représentation paramétrique de $\mathcal D$:

Théorème Un point M(x,y) appartient à la droite $\mathcal D$ si et seulement si il existe un réel λ (appelé paramètre) tel que

$$\begin{cases} x = x_A + \lambda x_{\vec{u}} \\ y = y_A + \lambda y_{\vec{u}} \end{cases}$$



Exemple Soit \mathcal{D} la droite passant par le point A(2,1) et dont $\vec{u}=(-3,-1)$ est un vecteur directeur. Un point M(x,y) appartient à \mathcal{D} si et seulement si il existe un réel λ tel que

$$\begin{cases} x = 2 - 3\lambda \\ y = 1 - \lambda \end{cases}$$

Autrement dit : $\mathcal{D} = \{M(2-3\lambda,1-\lambda), \lambda \in \mathbb{R}\}$. Cette phrase se lit : "la droite \mathcal{D} est constituée des points M de coordonnées $(2-3\lambda,1-\lambda)$, pour toutes les valeurs possibles du réel λ ".

Remarque Pour une droite donnée, le choix d'un point et d'un vecteur directeur n'est évidemment pas unique. Il existe donc une infinité de représentations paramétriques.

Passage d'une forme à l'autre On peut évidemment facilement passer d'une équation de droite sous forme cartésienne à une équation de droite sous forme paramétrique, et vice versa. Par exemple :

• Considérons la droite $\mathcal D$ d'équation cartésienne : 2x-y+5=0, et cherchons en une forme paramétrique. En x=0, la droite passe par l'ordonnée y=5. Le point A(0,5) appartient donc à $\mathcal D$. Le vecteur $\vec u=(-1,-2)$ est un vecteur directeur de $\mathcal D$. Ainsi un point M(x,y) appartient à $\mathcal D$ si et seulement si il existe un réel λ tel que

$$\begin{cases} x = -\lambda \\ y = 5 - 2\lambda \end{cases}$$

• Considérons la droite $\mathcal D$ définie par la forme paramétrique $\{M(4+\lambda,-1+2\lambda);\lambda\in\mathbb R\}$, et cherchons une équation cartésienne de cette droite : $\alpha x+\beta y+\gamma=0$. $\mathcal D$ admet pour vecteur directeur $\vec u=(1,2)$ (coefficients devant le paramètre λ) et donc pour vecteur normal $\vec n=(-2,1)$. Ainsi nous pouvons choisir $\alpha=-2$ et $\beta=1$. De plus le point A(4,-1) (obtenu en choisissant $\lambda=0$) appartient à $\mathcal D$ donc $\gamma=-\alpha x_A-\beta y_A=-(-2)\times 4-1\times (-1)=9$. Ainsi un point M(x,y) appartient à $\mathcal D$ si et seulement si il vérifie l'équation -2x+y+9=0.

3.3.2.3 Intersection de 2 droites dans le plan

Deux droites \mathcal{D} et \mathcal{D}' peuvent être **sécantes** (elles possèdent alors un seul point commun). Dans le cas contraire, elles sont **parallèles** : elles sont alors **confondues** (et possèdent une infinité de points communs) ou **strictement parallèles** (et n'ont aucun point commun).

Théorème Deux droites sont parallèles si et seulement si l'une des caractérisations suivantes est vérifiée :

- leurs deux vecteurs directeurs sont colinéaires
- leurs deux vecteurs normaux sont colinéaires
- le vecteur directeur de l'une est orthogonal au vecteur normal de l'autre

Pour déterminer le point d'intersection de deux droites sécantes, on est amené à résoudre un système linéaire de deux équations à deux inconnues. Les 3 cas de figures possibles sont exposés dans les exemples ci-dessous.

Exemples

- Intersection de $\mathcal{D}=\{(x,y),x+y=0\}$ et $\mathcal{D}'=\{(x,y)=(2-\lambda,1-\lambda),\lambda\in\mathbb{R}\}.$ On a x+y=0. Or $x=2-\lambda$ et $y=1-\lambda$ donc $(2-\lambda)+(1-\lambda)=0$, qui donne immédiatement $\lambda=\frac{3}{2}$. Ainsi, $x=2-\lambda=\frac{1}{2}$ et $y=1-\lambda=-\frac{1}{2}$. L'unique point d'intersection a pour coordonnées $(\frac{1}{2},-\frac{1}{2})$.
- Intersection de \mathcal{D} : x + 2y + 2 = 0 et \mathcal{D}' : 4x y 1 = 0.

Il faut donc résoudre le système $\left\{ \begin{array}{lll} x+2y&=&-2&(L_1)\\ 4x-y&=&1&(L_2) \end{array} \right.$

Pour éliminer x dans la deuxième équation, on effectue la transformation $(L_2) \leftarrow (L_2) - 4(L_1)$:

$$\begin{cases} x + 2y = -2 & (L_1) \\ -9y = 9 & (L_2) \leftarrow (L_2) - 4(L_1) \end{cases}$$

On trouve alors y=-1. Ce résultat est inséré dans (L_1) qui devient x-2=-2, ce qui donne x=0. Par conséquent, l'unique point d'intersection entre \mathcal{D} et \mathcal{D}' a pour coordonnées (0,-1).

• Intersection de $\mathcal{D} = \{(x,y) = (1-2\lambda,2+\lambda), \ \lambda \in \mathcal{R}\}$ et $\mathcal{D}' = \{(x,y) = (\mu,1+3\mu), \ \mu \in \mathbb{R}\}$ Un point d'intersection M(x,y) de \mathcal{D} et \mathcal{D}' doit vérifier les deux caractérisations, ce qui donne $x = 1-2\lambda = \mu$ et $y = 2+\lambda = 1+3\mu$. On a donc le système linéaire :

$$\begin{cases}
-2\lambda - \mu = -1 & (L_1) \\
\lambda - 3\mu = -1 & (L_2)
\end{cases}$$

En faisant $(L_1)+2(L_2)$, on élimine λ et on obtient $-7\mu=-3$, soit $\mu=3/7$. D'où $\lambda=-1+3\mu=2/7$. On en déduit alors $x=1-2\lambda=\mu=3/7$ et $y=2+\lambda=1+3\mu=16/7$. L'unique point d'intersection entre $\mathcal D$ et $\mathcal D'$ a pour coordonnées (3/7,16/7).

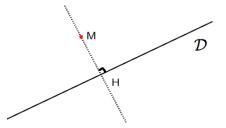
3.3.2.4 Distance entre deux points dans le plan

Théorème Soient A et B deux points du plan \mathbb{R}^2 . La distance entre ces deux points est égale à la longueur du vecteur \overrightarrow{AB} :

$$d(A, B) = \|\overrightarrow{AB}\| = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$$

3.3.2.5 Projection d'un point sur une droite - distance d'un point à une droite

Définition Soient \mathcal{D} une droite du plan et M un point du plan. On appelle **projeté orthogonal** (ou **projection orthogonale**) de M sur la droite \mathcal{D} le point d'intersection H entre la droite \mathcal{D} et la droite perpendiculaire à \mathcal{D} passant par M.



Définition La distance d'un point M à une droite \mathcal{D} est la distance la plus courte entre M et un point appartenant à \mathcal{D} .

Théorème Le théorème de Pythagore permet d'affirmer que la distance du point M à la droite \mathcal{D} correspond à la distance entre M et son projeté orthogonal H sur \mathcal{D} .

Si l'équation de \mathcal{D} est $\alpha x + \beta y + \gamma = 0$ où $(\alpha, \beta, \gamma) \in \mathbb{R}^3$ et $(\alpha, \beta) \neq (0, 0)$, et si M a pour coordonnées (x_0, y_0) , alors la distance de M à la droite \mathcal{D} vaut :

$$d(M, \mathcal{D}) = \|\overrightarrow{MH}\| = \frac{|\alpha x_0 + \beta y_0 + \gamma|}{\sqrt{\alpha^2 + \beta^2}}$$

3.3.3 Géométrie élémentaire dans l'espace affine (dimension 3)

On va maintenant énoncer des définitions et des résultats similaires à ceux du §3.3.2, mais dans l'espace \mathbb{R}^3 et non plus dans le plan \mathbb{R}^2 .

3.3.3.1 Equation d'un plan dans l'espace \mathbb{R}^3

Un plan dans l'espace affine \mathbb{R}^3 peut être défini sous une forme paramétrique ou sous une forme cartésienne.

Définition Soient α , β , γ et δ quatre réels tels que $(\alpha, \beta, \gamma) \neq (0, 0, 0)$ (i.e. au moins un des trois n'est pas nul). Alors l'ensemble des points de l'espace \mathbb{R}^3 défini par

$$\mathcal{P} = \{M(x, y, z); \ \alpha x + \beta y + \gamma z + \delta = 0\}$$

est un plan. On dit que l'équation $\alpha x + \beta y + \gamma = 0$ est une **équation cartésienne** de ce plan. Notons que cette caractérisation n'est pas unique puisque, par exemple, $2\alpha x + 2\beta y + 2\gamma z + 2\delta = 0$ est aussi une équation cartésienne du même plan.

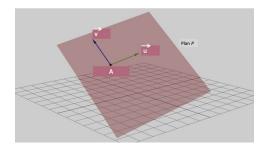
Théorème Tout plan \mathcal{P} de l'espace \mathbb{R}^3 admet une équation cartésienne de la forme $\alpha x + \beta y + \gamma z + \delta = 0$ où $(\alpha, \beta, \gamma, \delta) \in \mathbb{R}^4$, avec $(\alpha, \beta, \gamma) \neq (0, 0, 0)$.

De plus, $\vec{n} = (\alpha, \beta, \gamma)$ est un vecteur normal à \mathcal{P} .

On peut aussi remarquer que pour définir un plan \mathcal{P} de l'espace \mathbb{R}^3 , il suffit en fait d'un point $A(x_A,y_A,z_A)$ appartenant à \mathcal{P} et de deux vecteurs non colinéaires $\vec{u}=(x_{\vec{u}},y_{\vec{u}},z_{\vec{u}})$ et $\vec{v}=(x_{\vec{v}},y_{\vec{v}},z_{\vec{v}})$ de \mathcal{P} . Ces deux informations permettent notamment d'obtenir une **représentation paramétrique** de \mathcal{P} :

Théorème Un point M(x,y,z) appartient au plan $\mathcal P$ si et seulement si il existe deux réels λ et μ tels que

$$\begin{cases} x = x_A + \lambda x_{\vec{u}} + \mu x_{\vec{v}} \\ y = y_A + \lambda y_{\vec{u}} + \mu y_{\vec{v}} \\ z = z_A + \lambda z_{\vec{u}} + \mu z_{\vec{v}} \end{cases}$$



On peut bien sûr passer d'une forme (cartésienne ou paramétrique) à l'autre, comme on a su le faire pour les droites dans \mathbb{R}^2 .

3.3.3.2 Intersection de deux plans dans l'espace \mathbb{R}^3

Théorème Deux plans \mathcal{P} et \mathcal{P}' sont parallèles si et seulement si leurs vecteurs normaux \vec{n} et $\vec{n'}$ sont colinéaires, c'est-à-dire $\vec{n} \wedge \vec{n'} = \vec{0}$. Ils sont alors **confondus** (et possèdent une infinité de points communs) ou **strictement parallèles** (et n'ont aucun point commun).

Lorsque \mathcal{P} et \mathcal{P}' ne sont pas parallèles, ils possèdent une infinité de points communs : leur intersection est une droite de \mathbb{R}^3 ayant pour vecteur directeur $\vec{n} \wedge \vec{n}'$ (puisque ce vecteur est orthogonal à \vec{n} , donc appartient à \mathcal{P} , et est également orthogonal à \vec{n}' , donc appartient aussi à \mathcal{P}').

3.3.3.3 Intersection d'une droite et d'un plan dans l'espace \mathbb{R}^3

Théorème Un plan \mathcal{P} et une droite \mathcal{D} sont **parallèles** si et seulement si le vecteur directeur \vec{d} de \mathcal{D} est perpendiculaire au vecteur normal \vec{n} de \mathcal{P} , c'est-à-dire $\vec{d} \cdot \vec{n} = 0$. Ils sont alors **strictement parallèles** (et n'ont aucun point commun), ou bien $\mathcal{D} \subset \mathcal{P}$ (et il y a une infinité de points communs : tous les points de \mathcal{D}).

Lorsque le plan \mathcal{P} et la droite \mathcal{D} ne sont pas parallèles, ils possèdent un unique point d'intersection. On peut déterminer ses coordonnées en remarquant qu'elles vérifient simultanément les équations définissant \mathcal{P} et \mathcal{D} (système de 3 équations à 3 inconnues).

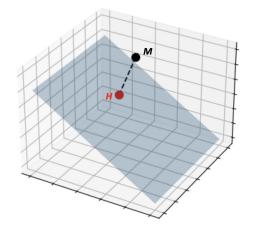
3.3.3.4 Distance entre deux points dans l'espace \mathbb{R}^3

Théorème Soient A et B deux points de l'espace \mathbb{R}^3 . La distance entre ces deux points est égale à la longueur du vecteur \overrightarrow{AB} :

$$d(A, B) = \|\overrightarrow{AB}\| = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2 + (z_B - z_A)^2}$$

3.3.3.5 Projection d'un point sur un plan - distance d'un point à un plan

Définition Soient \mathcal{P} un plan de \mathbb{R}^3 et M un point de \mathbb{R}^3 . On appelle **projeté orthogonal** (ou **projection orthogonale**) de M sur \mathcal{P} le point d'intersection H entre le plan \mathcal{P} et la droite perpendiculaire à \mathcal{P} passant par M.



Définition La distance d'un point M à un plan \mathcal{P} est la distance la plus courte entre M et un point appartenant à \mathcal{P} .

Théorème La distance du point M au plan \mathcal{P} correspond à la distance entre M et son projeté orthogonal H sur \mathcal{P} .

Si l'équation de \mathcal{P} est $\alpha x + \beta y + \gamma z + \delta = 0$ où $(\alpha, \beta, \gamma, \delta) \in \mathbb{R}^4$ et $(\alpha, \beta, \gamma) \neq (0, 0, 0)$, et si M a pour coordonnées (x_0, y_0, z_0) , alors la distance de M au plan \mathcal{P} vaut :

$$d(M, \mathcal{P}) = \|\overrightarrow{MH}\| = \frac{|\alpha x_0 + \beta y_0 + \gamma z_0 + \delta|}{\sqrt{\alpha^2 + \beta^2 + \gamma^2}}$$