CC1 MAT305

You can write in english.

Exercice 1

Calculer les derivées partielles f_x, f_y et f_{xy}, f_{yx} pour chacune des fonctions $f: \mathbb{R}^2 \to \mathbb{R}$ suivantes :

1.
$$f(x,y) = x^3y^2 + 5y^2 - x + 7$$

2.
$$f(x,y) = \cos(xy^2) + \sin x$$

3.
$$f(x,y) = e^{x^2 + y^3} \sqrt{x^2 + 1}$$

4.
$$f(x,y) = \frac{x^2 - y^2}{x^2 + 1}$$

Exercice 2

Pour chacune des fonctions f suivantes calculer $f_{xx} + f_{yy}$:

1.
$$f(x,y) = x^2 - y^2$$

2.
$$f(x,y) = e^x \sin(y) + e^y \cos(x)$$

3.
$$f(x,y) = \log(\sqrt{x^2 + y^2})$$

Exercice 3

On définit $f: \mathbb{R}^2 \setminus (0,0) \to \mathbb{R}$ par $f(x,y) = \log(x^2 + y^2)$.

- 1. Déterminer les ensembles de niveaux de f et donner une interpretation geométrique.
- 2. Monter que $f \circ \gamma$ est constante où $\gamma : \mathbb{R} \to \mathbb{R}^2$, $t \mapsto (\cos(t), \sin(t))$ et préciser la valeur du constant.
- 3. Calculer le gradient de f et $\dot{\gamma}$ le vecteur vitesse de $\gamma.$
- 4. Calculer le produit scalaire (grad f). $\dot{\gamma}$ et representer le résultat graphiquement.