Equation (a)

z2+(15i)z+(2i6)=0 z^2 + (1 - 5i)z + (2i - 6) = 0

D=b24ac=(15i)24(1)(2i6) D = b^2 - 4ac = (1 - 5i)^2 - 4(1)(2i - 6)

(15i)2=110i+25i2=110i25=2410i (1 - 5i)^2 = 1 - 10i + 25i^2 = 1 - 10i - 25 = -24 - 10i

4(2i6)=8i+24 -4(2i - 6) = -8i + 24

D=(2410i)+(248i)=18i D = (-24 - 10i) + (24 - 8i) = -18i


Equation (b)

z2(3+4i)z+(7i1)=0 z^2 - (3 + 4i)z + (7i - 1) = 0

D=b24ac=[(3+4i)]24(7i1) D = b^2 - 4ac = [-(3 + 4i)]^2 - 4(7i - 1)

((3+4i))2=((3+4i))((3+4i))=(3+4i)2 (-(3 + 4i))^2 = (-(3 + 4i)) \cdot (-(3 + 4i)) = (3 + 4i)^2

(3+4i)2=9+24i+16i2=9+24i16=7+24i (3 + 4i)^2 = 9 + 24i + 16i^2 = 9 + 24i - 16 = -7 + 24i

4(7i1)=28i+4 -4(7i - 1) = -28i + 4

D=(7+24i)+(428i)=34i D = (-7 + 24i) + (4 - 28i) = -3 - 4i


Equation (c)

2z2+(5+i)z+(2+2i)=0 2z^2 + (5 + i)z + (2 + 2i) = 0

D=b24ac=(5+i)24(2)(2+2i) D = b^2 - 4ac = (5 + i)^2 - 4(2)(2 + 2i)

(5+i)2=25+10i+i2=25+10i1=24+10i (5 + i)^2 = 25 + 10i + i^2 = 25 + 10i - 1 = 24 + 10i

42(2+2i)=16+16i 4 \cdot 2 \cdot (2 + 2i) = 16 + 16i

D=(24+10i)(16+16i)=86i D = (24 + 10i) - (16 + 16i) = 8 - 6i


Final Table

Equation Discriminant D=b24acD = b^2 - 4ac
z2+(15i)z+2i6=0z^2 + (1 - 5i)z + 2i - 6 = 0 18i-18i
z2(3+4i)z+7i1=0z^2 - (3 + 4i)z + 7i - 1 = 0 34i-3 - 4i
2z2+(5+i)z+2+2i=02z^2 + (5 + i)z + 2 + 2i = 0 86i8 - 6i