Formule quadratique

z=b±D2a,D=b24ac. z=\frac{-b\pm\sqrt{D}}{2a},\qquad D=b^2-4ac.


(a) z2+(15i)z+(2i6)=0z^2+(1-5i)z+(2i-6)=0

a=1,b=15i,c=2i6.a=1,\; b=1-5i,\; c=2i-6. On a trouvé D=18i.D=-18i.

On cherche D=18i\sqrt{D}=\sqrt{-18i}.

D=±(33i). \sqrt{D}=\pm(3-3i).

Formule quadratique :

z=(15i)±(33i)2=1+5i±(33i)2. z=\frac{-(1-5i)\pm(3-3i)}{2} =\frac{-1+5i\pm(3-3i)}{2}.

Racines (a) : 1+i,2+4i\boxed{1+i,\; -2+4i}.


(b) z2(3+4i)z+(7i1)=0z^2-(3+4i)z+(7i-1)=0

a=1,b=34i,c=7i1.a=1,\; b=-3-4i,\; c=7i-1. On a trouvé D=34i.D=-3-4i.

On cherche D=34i\sqrt{D}=\sqrt{-3-4i}.

D=±(12i). \sqrt{D}=\pm(1-2i).

Formule quadratique :

z=b±D2=3+4i±(12i)2. z=\frac{-b\pm\sqrt{D}}{2}=\frac{3+4i\pm(1-2i)}{2}.

Racines (b) : 2+i,1+3i\boxed{2+i,\; 1+3i}.


(c) 2z2+(5+i)z+(2+2i)=02z^2+(5+i)z+(2+2i)=0

a=2,b=5+i,c=2+2i.a=2,\; b=5+i,\; c=2+2i. On a trouvé D=86i.D=8-6i.

On cherche D=86i\sqrt{D}=\sqrt{8-6i}.

D=±(3i). \sqrt{D}=\pm(3-i).

Formule quadratique (2a=42a=4) :

z=(5+i)±(3i)4. z=\frac{-(5+i)\pm(3-i)}{4}.

Racines (c) : 2,1+i2\boxed{-2,\; -\tfrac{1+i}{2}}.


Résumé — toutes les racines