We are asked to find the equation of the perpendicular bisector of the segment ([PQ]), where: - (P(1,3)) - (Q(-1,2)).


Step 1: Midpoint of ([PQ])

The midpoint (M) has coordinates: M=(1+(1)2,3+22)=(0,52) M = \left(\frac{1 + (-1)}{2}, \frac{3 + 2}{2}\right) = (0, \tfrac{5}{2})


Step 2: Slope of (PQ)

The slope of the line (PQ) is: mPQ=321(1)=12 m_{PQ} = \frac{3 - 2}{1 - (-1)} = \frac{1}{2}


Step 3: Slope of the perpendicular bisector

The perpendicular slope is the negative reciprocal: m=1mPQ=2 m_{\perp} = -\frac{1}{m_{PQ}} = -2


Step 4: Equation of the perpendicular bisector

Equation through (M(0,)) with slope (-2): y52=2(x0) y - \frac{5}{2} = -2(x - 0) y=2x+52 y = -2x + \frac{5}{2}


✅ Final Answer

The equation of the perpendicular bisector of ([PQ]) is: y=2x+52 \boxed{y = -2x + \tfrac{5}{2}} ```