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On the Kilder form of the moduU space of once punctured tori 

SCOTT WOLPERT* 

A Riemann surface R of negative Euler characteristic has a unique hyperbolic 
metric. Provided R has finite area in this metric the Teichmiiller space T(R) of R 
will be a complex manifold. The complex structure of T(R) is characterized by 
describing the holomorphic cotangent space at R. A natural identification exists of 

the holomorphic cotangent space and Q(R), the space of holomorphic quadratic 
differentials on R. Consequently a Hermitian structure on Q(R) naturally gives 
rise to one on T(R). An example is the Petersson inner product. Given ~0, 
~b ~ Q(R) define 

(q~, O)= IR ~ x - 2  

where h 2 is the hyperbolic area element of R. The corresponding Hermitian 

structure on T(R) is that of the Weil-Petersson metric. The metric is invariant 
with respect to the Teichmiiller modular group and hence can be used to study the 
geometry of the moduli space of R. Ahlfors and Weil established that the metric 

is K~ihler. We are concerned with the K~ihler form to of the metric. 
A relationship exists between the geometry of to and that of the vector fields 

derived from a construction of Fenchel-Nielsen. A Fenchel-Nielsen vector field 
t(ot) on Teichmiiller space is associated to each closed geodesic ot of R. In the 

manuscript [10] the quantity to(t(~t), t(/3)) is evaluated as the sum of the cosines of 
the intersection angles of ot and/3. It is also shown that the vector fields t(a) are 
Harniltonian for to; to is invariant under the flow of t(o~). The form to and vector 
fields t(ot) are the elements of a symplectic geometry for T(R). The geometry is 
natural in the sense that to is invariant with respect to the Teichmiiller modular 

group. The  quotient of T(R) by the modular group is the classical moduli space of 
R. The K~ihler form to projects to the moduli space. 

The simplest example of the above discussion is provided in the case of the 

once punctured torus. In the first section we describe natural global coordinates 
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for the Teichmiiller space gr of the once punctured torus. These coordinates have 
no apparent  relationship to the complex structure of gr. Teichmiiller space in 
these coordinates is a simplex and the modular  group ~ acts as a group of rational 
maps. An analysis of the action of .,R is given. The discussion is concluded with a 
description of a fundamental  domain A. In the second section the KS.hler form to 
is calculated in the global coordinates and is found to be rational. Using the 
descriptions of to and A the integral Sa to is computed. It  reduces to that of the 
dilogarithm. The final result is 7r2/6, the area of the moduli space gr/.,r 

I would like to thank M. Gromov  and T. J0rgensen for their advice and 
suggestions. 

The Teichmiiller space 

We begin with an exposition of the Teichmiiller theory of the once punctured 
torus. Our  goal is to describe coordinates for the Teichmiiller space, and to 
describe the action of the modular  group. The material was in part  previously 
considered by Keen,  [3]. 

A once punctured torus is uniformized by a Fuchsian group F, F c PSL(2;  R). 

We shall use the following normalized form for the presentation of F. Hyperbolic 
transformations A, B ~PSL(2 ;R)  freely generate F with A B A - 1 B  -1 parabolic; 
the repelling (resp. attracting) fixed point of A is 0 (resp. ~) and the attracting 
fixed point of B is 1. In fact the group F can be lifted into SL(2; R) such that tr A, 
tr B, tr A B  become positive, where tr denotes the trace of a matrix. We shall 
consider F both as a subgroup of SL(2; R) and of PSL(2; ~) without making the 
proper  distinction. The quantities x = tr A, y = tr B, and z = tr A B  uniquely 
characterize the above description of F. The transformation A B A - I B  -~ is 
parabolic. An elementary argument shows that the commutator  A B A - 1 B  -~ has 
negative trace and consequently tr A B A - I B  -1 = - 2 .  The equation 
t r A B A - ~ B - ~ = - 2  is equivalent to the identity X24:-y2+z2-~xyz. This is the 

unique relation satisfied by the triple (x, y, z). 

T H E O R E M  (Fricke Klein [2], Keen [3]). The Teichmiiller space J o f  the once 

punctured torus is the sublocus o f  x 2 + y2 + z 2 = x y z  satisfying x, y, z > 2. 

It will be necessary to consider two other coordinate systems for gr. We begin 
by introducing the invariants a, b and c where a = x /yz ,  b = y /xz  and c = z/xy.  

Teichmiiller space is now the sublocus of a + b + c  = 1 satisfying a, b, c > 0 ,  a 
simplex. The third coordinate system will be introduced in the next section. 
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Distinct triples (x, y, z) and (~, Y, z) may describe conjugate Fuchsian groups 
and thus isometric punctured tori. We wish to better understand this phenome- 
non. It is the direct consequence of the non-uniqueness of a choice of generators 
in the presentation for F. The automorphism group of F will be used to study the 
different choices of generators for F. Let G be the free group with generators A 
and B. The automorphism group Aut (G) of G has generators, tr, P and U where 

tr(A) = A -1 P ( A )  = B U ( A )  = A B  
and 

tr(B) = B  P(B)  = A  U(B)  = B  ' 

[4]. A representation of Aut (G) in GL(2; 7/) is obtained by letting Aut (G) act on 
G/[G, G]-~7 /~Z .  Choosing the cosets of A and B as generators for G/[G, G] we 
have under the representation 

o-----~ ( - ~  ~) P---~ (~ ~) and U---~ {~ 11]. 

We shall be concerned with Aut § (G) the preimage of SL( 2 ; Z ) c  GL(2;7/). 
Denote by Inn (G) the inner automorphism group of G. The essential properties 
of the representation are given in the following theorem of Nielsen, [4]. 

THEOREM.  Let G be the free group on two generators. Then 

Out + (G) = Aut § (G)/Inn (G) ~ SL(2; 7/). 

In fact, by the representation 

the classical generators of SL(2; Z). By definition the Teichmiiller modular group 
for if- is Out + (G). The modular group ~ does not act effectively on if ;  the 

kernel of the action is l +  (10 ~)] .  Accordingly PSL(2; 7/)does act effectively on 

if-. It is this action that we wish to understand, in particular to describe a 
fundamental domain. 

For clarification we note that the upper half plane H also provides a coordi- 
nate system for ~r where the action of . / ~ S L ( 2 ; 7 / )  is by fractional linear 
transformations. We shall describe the map from the (x, y, z) coordinates to the H 
coordinates. To the triple (x, y, z) the point ~- ~ H is determined as follows. First 
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let F be the Fuchsian group associated to (x, y, z). Corresponding to the com- 
mutator sub-group [F, F]c  F is the abelian covering H/[F, F] of H/F. The 
covering surface H/[F, F] is planar and conformally equivalent to C - L  for a 
Euclidean lattice L. A conformal map of H/[F, F] to C - L ,  equivariant with 
respect to F/[F, F] and L, exists such that the cosets of A and B in F/[F, F] are 
conjugated into the generators of L. The lattice L is normalized such that its 
generators are ~" and 1 with ~ e H. The quantity ~- is the image of the triple 
(x, y, z). 

We now wish to focus our attention on the principal congruence subgroup 
F(2) of level 2 in SL(2; 2~), where 

F ( 2 ) = { C ~ S L ( 2 ; 7 / ) I C - - ( ~  ~) mod 2}. 

Denote  by PF(2)  the image of F(2) in PSL(2; ~). By an elementary argument the 
indices satisfy 

[SL(2; ~) : C(2)] = [PSL(2; 7/) : PF(2)] = 6. 

We wish to characterize the preimage of PF(2) in Aut (G) .  Let ~2  be the 
subgroup of Aut (G) generated by 01 = orU2, 02 = or and 03 = POrU2p. Under the 
representation of Aut (G) in GL(2; 7/) 

Ox--~ ( - ~  - ~ )  02---~ ( - ~  ~) and 03---> (_~ _01). 

Denote by ~ the intersection ~ N Aut + (G). Now the representations of Pl, 02 
and P3 each have negative determinant; consequently ~ c ~2  is the subgroup of 
words in pl, 02 and P3 of even length. Under the representation of Aut (G) we 
claim that ./d~- c F(2), and that . ~  surjects onto PF(2). Indeed the representations 

of 01, 02 and 03 are each congruent to (~ ~) mod 2, the inclusion ~ ;  c F(2) is 

immediate. The images of 0201 and 0203 are respectively (~ ~ ) a n d  ( - ~  _~ )  

the lifts of the generators of PF(2). We shall establish below that ~ acts 
effectively and thus conclude that the natural map ~ ;  ~ PF(2) is a bijection. 

First we shall consider the action of ~ in the (x, y, z) coordinates. We begin 
with the action of 01, 02 and 03 on the generators A,B of F 

ol(A) = B-2A  -1 p2(A) = A -1 p3(A) = A 

pl(B) = B p2(B) = B o3(B) = A-2B -1 
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There  is natural  induced action on the traces of the genera tors  of F. Recall ing that  
x = tr  A,  y = tr B, z = tr A B  we have 

ladx)= y z - x  o~(x)=x la~(x)=x 

lady)= y la2(y)= y o3(y) = x z - y  
m(z)=z la2(z)=xy-z o3(z)=z 

The following identity has been used: given C, D e  SL(2 ;R)  then tr C t r D  = 
t r C D + t r C - 1 D .  The above  triples satisfy x 2 + y 2 + z 2 = x y z ,  x, y, z > 2 .  For  

example  consider the triple (lax(x), lax(Y), lax(z)). By the quadrat ic  formula  2x = 
yz + ( y Z z 2 -  4(y 2 + z2)) 1/2 < 2yz  hence  yz - x is positive. F rom the definition of  

Au t  (G)  there exists a unique normalized Fuchsian group r with generators  fi,,/3 
satisfying Itr fi'l = yz - x, Itr/31 = Y, Itr fit/~l = z and tr fi,, t r /3,  tr .6/3 > 2. Necessar-  
ily we have that  tr A = yz - x, t r /3  = y and tr f i ~  = z. The  description of  the ~ 2  

action is complete .  W e  also give the action of lax, 192 and 03 in the (a, b, c) 
coordinates  

ca ba 
px(a) = 1 - a  p2(a) = -  p 3 ( a ) -  

1 - c  1 - b  

ab cb 
p x ( b )  = o 2 ( b )  = 03(b) = 1 - b  

1 -  a 1 - c  

ac bc 
m(c)= p2(c)= 1 - c  p 3 ( c ) = - -  

1 - a  1 - b 

W e  shall now describe a fundamenta l  domain  for  the action of d ~  2 o n  23-. 
Consider  the domain  zl c if, zl = {(a, b, c) 6 if- la, b, c -<�89 A will be a fundamenta l  
domain  for alga. Indeed  this is an immedia te  consequence  of the observat ion that  
the funct ion E(x ,  y, z ) =  x + y + z achieves a unique min imum on the orbit  M2(p), 
p ~ if" at the unique point  of  the orbi t  in A. W e  shall make  the a rgument  in several 

stages. E is the sum of positive traces f rom a fixed group  f ' ;  the set of traces of 
e lements  of  F is discrete. The  min imum of E on the orbi t  M2(p) exists. For  the 
remaining arguments  we require the following e lementary  formulas  

E O p l - E  1 x E o p 2 - E  1 z E o p 3 - E  1 y 
- (1 )  

2yz  2 yz 2xy 2 xy 2xz  2 xz  

Now if q e M,2(p) represents  a min imum then necessarily E(pj(q))->E(q) ,  1-----j-< 
3. In  part icular  the formulas  (1) show that  the coordinates  a,b,c of q are each 

b o u n d e d  by �89 hence  q e zi. 
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First we shall establish a convexity property of E along the orbit .A~2(p). Let 
w , . - .  wl be a reduced word in pl, 02 and 03 (note that pj = p i  1, 1 <-j-<3). Then 
we claim the finite sequence E(s ) ,  E ( w l ( s ) )  . . . . .  E ( w ,  . . .  wl(s)) ,  s ~ is strictly 
convex. Consider the alternative: n > 2  and r = w i . . .  w~(s), j < n  exist with 
E (r) >- E(wj_ l  " �9 �9 wl(s))  = E ( w  i(r)) and E(r)  >- E(wj+~(r)). Letting the coordinates 
of r be (fi, b, ~) then the inequalities E(r)>-E(wi (r ) )  and E(r)>-E(Wj+l(r))  com- 
bined with (1) establish that two of the inequalities t~_>�89 6___ 1 and ~->�89 
necessarily hold, contradicting (4,/~, ~) ~ ft. The convexity property is established. 
Consider now q , r ~ A  points of the orbit ~2(P)- Using (1) we observe that 
E(#j(q))  >- E(q) ,  E(Oj (r)) >- E(r) ,  1 -< i-< 3. Now these inequalities and the convex- 
ity of E imply that either q = r or t~ (q) = r for some k, 1 -< k -< 3. In the latter case 
E ( r ) = E ( ~ ( q ) ) > - E ( q )  and E ( q ) = E ( ~ ( r ) ) > - E ( r ) ;  the definitions of E and t~ 
show that actually q = r. In conclusion the minimum of E on an orbit ~t2(p) occurs 
at its unique intersection with A. 

We observe in closing that ~r acts effectively. Otherwise a nontrivial reduced 
word w, �9 �9 �9 wt, n > 2 exists with E ( w ,  �9 �9 �9 w~(q)) = E(q) ,  q ~ A contradicting the 
convexity of E. The subgroup ~t~ c ~  2 necessarily acts effectively; the natural 
map ~t~---> PF(2) is a bijection. As a consequence we have that the index 
[PSL(2;  7/): ~t~] is 6. 

The Kiihler form 

Our goal is to derive the expression for the Weil-Petersson K~ihler form to in 
the (a, b, c) coordinates and then intergrate to over the fundamental  domain A. 
We begin with the formula evaluating to on the Fenchel Nielsen vector fields in 
terms of the hyperbolic geometry of closed geodesics on a Riemann surface. Then 
we proceed by a change of variables to obtain the desired formula. Finally the 
integral of to over  A is considered. 

We consider only Riemann surfaces R with a hyperbolic, constant curvature 
- 1 ,  metric of finite area. A deformation of the metric R is defined by the 
following construction. Our point of view throughout is that a fixed topological 
surface underlies the conformal structure of R. Let 3' be a simple closed geodesic. 
Cut R along 3", rotate one side of the cut relative to the other, and then glue the 
sides together in their new position. Perform this deformation continuously such 
that the distance between two points, one on each side of the cut, is measured by 
the time elapsed. A tangent vector of this deformation is an infinitesimal twist 
t(3"). Our  approach centers on the Fenchel-Nielsen tangents t(v). An important  
invariant of the hyperbolic metric on R is I(3"), the length of the unique geodesic 
in the free homotopy  class of ~/. 
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In the manuscripts [8, 9, 10] the geometry of the quantities to, t(a) and 1(/3) is 
investigated. The fundamental formula is to(t(c~), ) = -dl(ct).  An immediate conse- 
quence is that the vector fields t(a) are Hamiltonian for the symplectic form to. 
Indeed a symplectic geometry is associated to the quantities to, t(c~) and l(a). We 
shall only require the following two formulas. Denote  by ct # / 3  the intersection 
locus of the geodesics ~ and /3 then 

to(t(ot), t(/3))= t(ct)l(/3) 

and 

to(t(,~), t(~))= ~ cos 0p 
p ~ a # D  

where 0~ is the intersection angle at p measured from o~ to /3 [9, 10]. 

Let  T ( R )  be the Teichmiiller space of R and s its complex dimension. It is 
classical that free homotopy classes 'Y1 . . . .  , "/2~ can be chosen such that the 
lengths l('yj), 1-<j-< 2s provide local real coordinates for T ( R )  near R. We begin 
with an expression for to in these coordinates. 

LEMMA.  

to = ~ Wk~ dI i/x dlk 
j<k  

where the matrix (Wjk) is the inverse of the matrix (t(~/j)l(~/k)). 

Proof. We abbreviate tj for t(Vj) and l i for l(3~i) and use repeated indices to 
indicate summation. By the chain rule tilm(O/Olr,) = t,, 1 <-j <- 2s and hence O/Ol~ = 
Wjmt,,. Now we calculate 

to = ~ ,  to , cllj ^ al~ 
/ < k  

j<k  

i < k  
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Using the equat ion o)(t~, t~) = tin/. we proceed  

253 

t o =  ~, Wi, , ,Wk, ,~l , ,d l iAdl  k 
i<k 

= ~ Wki dlj A dlk, 
i<k  

and the calculation is complete.  

The  volume form d V  of the Wei l -Pe tersson  metric by definition is (1/s!)~o ~ = 
(1/SI)~0A --"  /X~o. :3- has complex dimension 1; to is the volume form of ~.  Note  
that  the Kfihler metric on i f -~  H is not complete  and thus is not  a multiple of the 
hyperbol ic  metric,  [7]. We now argue that in the (x, y, z) coordinates  

~o = 4 dx dy  A 

xy - 2 z  

and then in the (a, b, c) coordinates  

da A db 
r  

abc 

By definition if F represents a point  of if- with generators  A,  B then 

x = tr A -- 2 cosh I1/2 

y = tr B = 2 cosh 12/2 

z = tr A B  = 2 cosh lAB~2 

where  l ,  is the length of the appropr ia te  geodesic and x, y are local coordinates  

for if- provided x y -  2z  ~ 0. Apply ing  the above lemma we have that 

to = (tl12) -1 dll /xdl2 

where t l / 2 = c o s  O, and 0 is measured  from A to  B. The  following diagram 
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indicates the geometry of the geodesics corresponding to A, B and A B  

IAB/2 

where the lengths are for the sides of the triangle, [7]. By the law of cosines 

cosh I J2  cosh 12]2 - cosh IAa]2 
COS 0 = 

sinh 11/2 sinh 12/2 

and thus 

sinh 11/2 sinh 12/2 
to = dll A dl 2. 

cosh 11/2 c o s h / 2 / 2 - c o s h  lAa]2 

Now dx = sinh 11/2 dll ,  dy = sinh 12/2 dl2 and on substituting we obtain 

4 d x A d y  
O , l ~ - -  

xy  - 2 z  

the first expression. 
The second expression is obtained by the rational change of variables. Begin- 

ning with the formulas x - 2 = b c ,  y - 2 = a c  and z - 2 = a b  we have - 2  dx/x  = 

db/b + dc/c and - 2  dy/y  = da/a  + dc/c thus 

4 dx A dy  db A da db A dc dc A da 
= + ~ +  

xy  ba ca 

or using a + b + c = 1 

4 d x A d y  

Xy 
a + b - C  d a ^ d b .  

abc 
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Finally we obtain  

a + b - c  d a A d b  
to d a  A d b  = - -  

a b c  (1 - 2 c )  a b c '  

which is valid th roughout  f f  since to is real analytic. 
W e  are ready  to consider  the to integral 
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to = a b ( ~ - a - - b ) "  
a 

Using  the descr ipt ion of A we have  

IA = f,/2 fl/2 d a d b  f , /2  f , /2  (1 

~o a b  (1 - a - b )  - ~o Ca) a l / 2 - - b  " S l / 2 - b  a -~ - -  

f l12 2 1 

"0 b ( 1 - b )  l ~  d b  

1 "~ d a  d b  

1--b-a) b(1-b) 

and substi tut ing v = 1 -  2b yields the c o m m o n  di logar i thm integral  

fO 1 'IT 2 = - 4  - -  log v dv = - -  
1--1) 2 2 

[1]. 

W e  comple te  the calculation by considering the index of JCt~ c P S L ( 2 ;  7]). T h e  
fo rm to is JZ2 invariant  and A is a fundamenta l  domain  for  ~2 .  Using the 

previously c o m p u t e d  indices 

I~r t~ = ["g2 : ~ ]  I~/ t~ = ~'2 
/ .~ .~ 

to-- + 6 / .  [PSL(2;  7/) : ~/~] ~ / - I  to = - -  

the area  of modul i  space for  the  once punc tured  torus. 
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