
THE DOUBLE LIFE OF PANTS

GREG MCSHANE

1. Introduction

This paper is about embedding Teichmeuller space of a bordered surface, for
example of pants, in a bigger space –the Thurston shear space. The geometry of
this space allows us to study deformations of certain geometric constructions in a
convenient way.

Recall that a pants is a compact oriented triply connected surface together with
a hyperbolic structure such that the boundary is totally geodesic. It is a planar
surface and can be drawn (see figures) as a disc minus two disjoint subdiscs. The
lengths of the three boundary components give a parameterization of the Teich-
meuller space of pants [1]. When (at least) one of the boundary lengths is 0 the
surface is still triply connected, non compact, though of finite volume. Such a sur-
face is said to be a degenerate pants. A three punctured sphere is an example of
degenerate pants.

There are two ways of constructing pants:

(1) as the double of a right angled hexagon along three of its six sides.
(2) as the shear of an ideal triangulation on a thrice punctured sphere.

The first point of view is the familiar one predominant in the litterature [9],[2]
or [1] and even [?]. The second point of view, though less well known, has several
advantages over the first not least of which is that the resulting pants comes with
the additional structure of a distinguished maximal lamination.

Let M be a hyperbolic surface of genus g with n > 1 totally geodesic bound-
ary components one of which is labelled γ. Following Mirzakhani’s [7] let Tg(L1 =
`γ , L2 . . . Ln) denote the space of marked Riemann surfaces of genus g with n bound-
ary components of lengths L1 = `γ , L2 . . . Ln > 0. We introduce a deformation

space, which we call the enhanced Teichmueller space , T̃g(L1 = `γ , . . . Ln), Li 6= 0
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which is an decorated version of Mirzakhani’s space Tg(L1 = `γ , . . . Ln). Formally
the decoration consists of a choice of sign for each boundary component allowing us
to consider signed (or oriented) lengths for oriented boundary curves. We identify
this space with a subset of the space of shear coordinates of an ideal triangulation
on a surface M of genus g with n punctures. this allows us to give a geometric
interpretation of the sign and the signed length.

To define the sign we need the idea of peripheral system. Choose a maximal
family of closed punctured discs Di, 1 ≤ i ≤ n} in M such that for i 6= j Di, Dj

meet in in exactly the basepoint of M ; the boundary curve ∂Di is freely homotopic
to the i-th cusp. A peripheral system is the set of γ+i ∈ π1(M, ∗) where γ+i is a
based loop representing ∂Di with the boundary orientation from the inclusion in
M \Di.

Recall that every complete hyperbolic structure on a punctured surface can be
constructed by gluing ideal triangles along their edges. The gluing data is the set of
shear coordinates [3] satisfying a linear system of constraints, namely that the sum
of the shears round each of the peripheral loops is 0. When one modifies the shear
data so that the sum of shears round γ+i is no longer 0, one still obtains a surface
homeomorphic to the punctured surface but the metric is incomplete. Its comple-
tion is a surface with boundary and the lengths of the boundary components are
the absolute value of the sum of shears round the γ+i . The enhanced Teichmeuller
space thus arises naturally on taking account the signs of these sums of shears.

More formally, the shear coordinates determine a developping map from the
universal cover of the surface, viewed as a collection of ideal triangles modulo gluing
maps, into H2. The associated holonomy representation

HOL : π1(M)→ PSL(2,R),

is not necessarily type preserving i.e. HOL(γ+i ) may be not be parabolic. Let γ+i be
a peripheral loop such that HOL(γ+i ) is hyperbolic. After conjugating if necessary
we may assume that image of the developping map is contained in the right half
space and that x = 0 is the axis of HOL(γ+i ). The signed length `γi is defined by
the equation

HOL(γ+i )(z) = e`γi z

.
The simplest case of this construction, that of a pair of pants, is of particular

interest and leads to deep results in moduli theory. The completion of T̃0(`γ , `α, `β)
can be identified with structures obtained by shearing along an ideal triangulation
on a thrice punctured sphere.

2. Identities for pants

We develop this approach with a view to studying the so-called McShane identity
and one of its generalizations. For surfaces of any genus g ≥ 1 with a single
puncture:

(1)
∑
α,β

1

1 + exp(
`α+`β

2 )
=

1

2
.

where α, β are closed geodesics which bound an embedded (degenerate) pair
of pants with the cusp. So that the RHS defines a constant function over the
Teichmeuller space Tg,1, g ≥ 1.
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We shall prove an enhanced version of Mirzakhani’s theorem [7]:

Theorem 1. For any surface in x ∈ T̃g(L1 = `γ , L2 . . . Ln),∑
α,β

D(`γ , `α, `β) +
∑
α,γ′

R(`γ , `α, `γ′) = `γ .

where

(1) α, β is a pair of closed non boundary geodesics which bound an embedded
pair of pants with γ.

(2) γ′ is a boundary geodesic which bounds an embedded pair of pants with α, γ.
(3) D,R : R3 → R are real analytic functions.

Explicit expressions for gap functions
The first aim of the paper is to define and calculate the functions D,R, the so

called gap functions, using shear coordinates. Mirzakhani [7] (see also [14]) gives
explicit expressions for the gap functions:

Lemma 2.

D(x, y, z) = 2 log

(
exp(x2 ) + exp(y+z2 )

exp(−x2 ) + exp(y+z2 )

)

R(x, y, z) := x− log

(
cosh(y2 ) + cosh(x+z2 )

cosh(y2 ) + cosh(x−z2 )

)
.

These functions appear as factors in unfoldings of integrals over moduli space
and as such are of fundamental importance in the theory of intersection numbers
of Chern classes over these spaces [6], compare [?].

The arguments in the first gap function are essentially x, y + z and, in some
sense, this observation is really the starting point for this paper. This as well as
the fact that D is odd in x i.e.

(2) D(x, y, z) = −D(−x, y, z)
and the identity

(3) R(x, y, z) =
1

2
(D(x, y, z) +D(x, y,−z))

appear naturally, and without the use of any hyperbolic trigonometry, from our
construction. The essential step in proving Lemma 2 involves calculations using
only affine transformations parameterized by shear coordinates.

3. A localization of the Birman-Series set

Let M be a convex surface of finite area; we suppose (see [2]) that M is repre-
sented as convex core of H2/Γ for Γ = ρ(π1) a fuchsian representation of π1(M).
Recall that the Birman Series set is the set of all complete simple geodesics on
M . in [5] we studied so-called gaps in the Birman Series set in a neighborhood
of a cusp. The second part of the paper is concerned with giving a formalism for
gap that works for surfaces with cusps as well as surfaces with boundary. To do
this we translate the ideas of [5] into the language of fuchsian groups acting on
∂H2 = S1. The limit set of Γ, Λ ⊂ ∂H2 is the (unique) minimal closed Γ invariant

subset pof ∂H2. We define and a ”localization”, X̂ess(p),of the Birman Series set
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at a peripheral point p in the limit set; the reader should think of p as being the
positive fixed point of a HOL(γ+i ) above.

The set of recurrent geodesics on M can be viewed as the quotient of the com-
plement of the diagonal in Λ × Λ by the diagonal action of Γ. Following Manin
we use the notation {a, b}, a, b ∈ ∂H2 to represent the geodesic joining a to b and
oriented/directed in this direction.

An element h ∈ Γ is peripheral if it is parabolic or if it is hyperbolic and its
axis covers a boundary component. We say that p ∈ Λ is a peripheral point iff p is
fixed by a peripheral element and write Λper for the set of peripheral points. For
p ∈ Λper let X̂(p) be the set of x ∈ Λ such that the geodesic γ̂x = {p, x} covers a
simple geodesic γx on the surface. We write

X(p) := X̂(p)/stab(p).

where stab(p) < Γ be the stabiliser of p. Observe that, when p is parabolic then
one may identify x ∈ X(p)/stab(p) with the γx ∩ ∂H ∈ E ∩ ∂H – where ∂H is a
small horocycle based at the corresponding cusp on M and E is the set of ends of
simple geodesics going up the cusp p (compare [5]).

Let us now say precisely what it means, in terms of points of ∂H2, for one geodesic
to spiral to another on M . Let γ̂ = {c−, c+} ⊂ H2 cover a directed geodesic γ ⊂M .

A geodesic δ spirals to γ iff there is a lift δ̂ with an endpoint in the set Γ.{c+}.
Note that if γ is closed then γ it is contained in the closure of δ. Note also that if
γ is an oriented boundary geodesic then the set of simple geodesics which spiral to
γ is just the set of γx with x ∈ X(p) for p = c+.

By the theory of laminations [?] X̂(p) is closed and, by the Birman-Series Theo-
rem, it is nowhere dense so it is a Cantor set union countably many isolated points.
A point x of a Cantor set in R is a boundary point iff it is in the closure of an
open interval in the complement of Xess(p) and is a deep point otherwise. We write
Ω(γx) for the minimal lamination in the closure of γx and we say that γx spirals to
Ω(γx). The lamination can be one of three things:

• Ω(γx) is γx a single geodesic with both ends in cusps iff x too is a parabolic
point.

• Ω(γx) is a single simple closed geodesic iff x is a hyperbolic point.
• Ω(γx) something much more complicated –an arational lamination – if x is

neither parabolic nor hyperbolic.

In [5] it was shown that these types correspond to respectively the isolated,
boundary and deep points of X(p) (Theorem 3 below).

Let

X̂ess(p) := X̂(p) \ Λper.

With these definitions, Theorem 4 of [5] can be restated:

Theorem 3. Let N = H2/Γ be a surface (convex, finite area without boundary)

with a cusp. Let p be a peripheral point and x ∈ X̂(p):

(1) x is isolated iff x is a peripheral point i.e. x ∈ Λper, so that X̂ess(p) is a
Cantor set.

(2) x is a boundary point of X̂ess(p) iff it is the fixed point of a (non trivial)
non peripheral element of Γ.

(3) Every gap contains a peripheral point.
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Figure 1. The partial foliation and the edge orientations on an
ideal triangle.

Definition A gap is a component of the complement of X̂ess(p). Note that this is
not quite the same definition as in [5] but it is consistent and we use it throughout
this article. The terms in Theorem 1 are in fact the sizes of gaps and part (3) above

says essentially that the gaps are ”indexed” by peripheral points of X̂(p).
We shall use this version of the theorem to prove the key lemma, namely:

Lemma 4. Let Γ be a fuchsian representation of π1(M). Every gap in X̂ess(p)
contains a peripheral point p′ ∈ Λper.

Each gap in X̂ess(p) gives rise to a gap in X̂ess(p)/stab(p) = Xess(p) in the
obvious way.

Corollary 5. Every gap in Xess(p) arises from the gap construction in pants
(Lemma 7).

The identity in Theorem 1 follows immediately from Corollary 5 and Lemma 2
plus the Birman-Series Theorem i.e. the Lesbegue measure of X(p) is zero so that
the sum of sizes of gaps is the (signed) length of the boundary γ.

4. The geometry of an ideal triangle

Everything hinges on understanding the geometry of an ideal triangle so, for
completeness, we recall several definitions. An ideal triangle is the convex hull
of three distinct points at infinity in H2. There is only one such triangle up to
isometry and its area is π. When we say an ideal triangle in a surface we always
mean an embedded ideal triangle in the surface.

We choose an orientation for the edges of ideal triangle as in the Figure 1 and
call this the canonical orientation.

Each side of an ideal triangle contains an unambiguously defined midpoint some-
times called a tick mark. The midpoint of an edge can be characterised by saying
that it is the fixed point of the unique involution of the triangle that swaps the
endpoints of the edge.

There is a natural partial foliation of an ideal triangle by horocyclic segments
based at the vertices as per the diagram. A corner or prong of an ideal triangulation
is a sub region containing a single ideal vertex and bounded by a leaf of this foliation.
A calculation shows that the length of a leaf is just the area of the corner which it
bounds.

Finally, there are three osculating leaves with endpoints at the tick
marks/midpoints. Another calculation shows that length of a leaf at height h
above an osculating leaf is exp(−h).
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Figure 2. The four points Q,Q’,R,R’.
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Figure 3. Grimace d’enfants: two smilers and a twister.

5. Geodesics on pants

We start by reviewing the geometric definition of the gap functions R,D. Label
the boundary curves of a pants α, β, γ. There are four special points Q,Q′, R,R′ ∈ γ
(Figure 4) these are the initial points of simple geodesics which meet γ perpendicu-
larly and spiral to α or β. The function R is the distance between the points R,Q
(see Figure 3) going anti-clockwise. Mirzakhani [7] views this quantity as `γ− size
of projection of β onto γ and defines

D(x, y, z) := R(x, y, z) +R(x, z, y)− x.

The function D is in fact the sum of the lengths of the distances (going anti-
clockwise) between P, P ′ and R′, R. The intervals P, P ′ and R′, R turn out to be
gaps; recall that a gap is a portion of the surface that meets no complete simple
geodesic. These gaps have the same size and are swapped by an involution of the
pants.
Orientation on the boundary

Let P be an oriented pair of pants and α+, β+, γ+ ∈ π1(P, ∗) a peripheral system
for P We think of P as being the quotient of H2 by a fuchsian represenation
ρ : π1 → Γ. Let a−, a+ denote respectively the attracting and repelling fixed points
of ρ(α+) likewise b−, b+ the attracting and repelling fixed points of ρ(β+) and c−, c+

for ρ(γ+) The attracting and repelling fixed points of ρ(α+), ρ(β+), ρ(γ+) alternate
on H2 as in Figure 4 on the left.
Spinning, decorated pants

Let γ+ be an oriented boundary. Take any complete geodesic with an endpoint
on γ+, push the endpoint along γ+ in the preferred direction to get a sequence
of geodesics converging towards a complete geodesic asymptotic to γ+. When one
carries out this procedure with the geodesics of the smiler or the twister one ob-
tains a configuration the closure of which is a maximal lamination (see figure 4)
with exactly six leaves – the three boundary geodesics plus three leaves that spiral
between the boundary components.
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a- b+

c- c+

b-a+

Figure 4

Figure 5. Spinning a twister and a smiler. The thin corner is the
”bottom lip” of the smiler.

Definition Consider the set of oriented pants P with a decoration that consists
of a choice of maximal lamination λ ⊂ P such that no leaf of λ separates. The
coordinates on this space are signed boundary lengths (`γ1 , `γ2 , `γ3) where the sign
of `γi is positive iff there is a leaf of λ spiralling to γ+i . The enhanced Teichmeuller
space of pants is the set of (P, λ) with these coordinates. The completed enhanced
Teichmeuller space of pants is the set of pairs (P, λ) where P is now allowed to be
a degenerate pants i.e. with a cusp instead of a geodesic boundary component γi;
the usual convention applies in this case that `γi = 0.

Example: The twister and the smiler in Figure 4 live on a pants P with
boundary lengths | `α |, | `β |, | `γ |. The pair (P , twister ) has coordinates
(| `α |, | `β |, | `γ |) whilst (P , smiler ) has coordinates (− | `α |, | `β |, | `γ |) in the
enhanced Teichmueller space.

6. Shear coordonates for the three punctured sphere

We now construct pairs of pants from a pair of ideal triangles using Thurston’s
shear construction.

Let T, T ′ be a pair of ideal triangles together with an isometric gluing map I from
the edges of T to the edges of T ′ so that P := (T ∪T ′)/I is a surface homeomorphic
to the interior of a pants. Label the midpoints/tickmarks of T A,B,C and the
midpoints of T ′ A′, B′, C ′ such that I(A) is mapped into the edge containing A′

etc. Give each edge of T ′ its canonical orientation and let a be the signed distance
from A′ to A, b be the signed distance from B′ to B and c be the signed distance
from C ′ to C with respect to this orientation. The numbers (a, b, c) ∈ R3 are called
shear coordinates. Since the restriction of I to each edge of T is an isometry the
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Figure 6. On the left a three punctured sphere with an ideal
triangulation. On the right the developping round γ in H2.

shear coordinates parameterize all possible gluing maps I. Define the shear space
to be the set of all surfaces obtained by varying a, b, c.

Note that, since P is obtained from T ∪T ′ we have extra structure coming from
the canonical map T ↪→ (T ∪T ′)→ P , we interpret this as the choice of a maximal
lamination λ = (the closure of the edges of T ) on the completion, P̄ , of P . Thus
it is natural to try and identify the shear space and the space of decorated pants
introduced above. We do this by constructing a diffeomorphism between these
spaces – a change of coordinate map.

To determine this change of coordinate map we want to calculate the image
of the three peripheral loops α+, β+, γ+ ∈ π1 under the holonomy representation
HOL.

Let us see how the developping map from the universal cover P̂ of P = (T∪T ′)/I
into H2 determines the holonomy HOL(γ+) round γ+. We identify T with the

ideal triangle T̂ = 0,−ea,∞ and T ′ with T̂ ′ the triangle 1, 0,∞ so that T̂ ∪ T̂ ′
is the image under the developping map of a fundamental domain for the action
of the deck transformations on P̂ ; a quick calculation shows that the shear along
{∞, 0} is indeed a. The geodesic 1,∞ is the intersection of T̂ ′ with another ideal

triangle namely HOL(γ+)(T̂ ). On the other hand, the shear coordinate along the

corresponding edge in (T ∪ T ′)/I is b so that HOL(γ)(T̂ ) has vertices 1, 1 + eb,∞.

Considering the vertices of T̂ one sees that the holonomy satisfies

−ea 7→ 1, 0 7→ 1 + eb,∞ 7→ ∞,

and, since it is an isometry of H2, this means

HOL(γ+)(z) = e(a+b)z + (eb + 1), ∀z ∈ H2 ∪ ∂H2.

Suppose a+ b 6= 0 so that HOL(γ+) fixes∞ and η = 1+eb

1−ea+b . We now determine

whether the edges of T spiral to γ+ or γ−. From the discussion of spiralling in
Section 3 it suffices to check if ∞ is respectively the attracting or repelling fixed
point of HOL(γ+). If a+ b > 0 then η < 0 and the image of the developping map is
contained in the half space x > η, the geodesic ∞, η covers a boundary component
of the completion P̄ of length a + b. Moreover ∞ is the attracting fixed point of
HOL(γ+) and so the edges of T spiral to γ+. Similarly, if a+ b < 0 η > 0 and the
image of the developping map is contained in the half space x < η, the geodesic
∞, η covers a boundary component of the completion of (T∪T ′)/I of length | a+b |.
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Figure 7. The normalized lifts used to calculate G,H .

Moreover ∞ is the repelling fixed point of HOL(γ+) and so the edges of T spiral
to γ−. In either case one concludes that a+ b = `γ as required.

When a + b = 0 the holonomy HOL(γ+) is clearly parabolic, `γ = 0 i and the
geodesics go up the cusp.

By symmetry of the gluing map I one obtains:
Shear equations

b+ c = `α

a+ c = `β

a+ b = `γ

This proves:

Lemma 6. Change of coordonates The map

(a, b, c) 7→ (b+ c, a+ c, a+ b).

is a diffeomorphism between the shear space of the thrice punctured sphere and the
completed enhanced Teichmueller space of pants.

In fact, as we shall see below, only the value of a = 1
2 (−`α + `β + `γ), where `.

denotes signed length, is important in the calculation of the gap functions.

7. Pants and gaps

Both the smiler and the twister have two corners winding round γ. For the
smiler one of these corners, which we call the thin corner (see Figure 4 and Figure
7), is special. Given a twister and a smiler, on the same pants of course, they have
exactly one geodesic in common and the twister has a corner disjoint from the thin
corner in the smiler. We call this latter corner the companion of the thin corner.

Now suppose that the pants P is a surface M with a disingushed peripheral loop
γ+ ⊂ P . Let Xess(p) be as in the introduction for p a choice of endpoint c−, c+ of
a lift of γ+. The following observation is essentially made in [5]:
Gap principle: every geodesic p, x, x ∈ Xess(p) which does not spiral to either α
or β crosses either α or β.

Lemma 7. Gaps exist

(1) If neither α nor β is a boundary geodesic then the thin corner in a smiler
is a gap.
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(2) If β is a boundary geodesic then there is a gap containing the thin corner
of the smiler and its companion in the twister.

Proof:
2

8. Gap functions

In this section we define and determine explicitly the functions G,H appearing in
Theorem 1;‘ G is none other than the ”width” of the thin corner and H the ”width”
of a companion corner as defined above. By the preceding lemma G and G +H are
the signed ”widths” of gaps in Xess(p).

We continue use the same notation (Section 5, Figure 4) for peripheral elements
and endpoints. In order to calculate these functions in terms of signed lengths
we normalize the covering map πM : H2 → M where M = H2/Γ. By covering
theory picking a normalization is equivalent to conjugating the fuchsian group Γ.
We conjugate Γ so that z 7→ e`γz is the holonomy round the boundary component
γ+. It follows that the thin corner lifts into an ideal triangle the sides of which are
vertical lines x = a− and x = b+. The sides of the companion corner lifts into an
ideal triangle the sides of which are x = b+ and x = e`γa+.
Observation:

Observe that one can conjugate Γ by any element of 〈z 7→ esz, s ∈ R〉 whilst
preserving this normalization and that dt/t is an invariant 1-form for this group of
transformations.

If z ∈ X(p) ⊂ Λ, p =∞ then z < e`γz and we may write

`γ =

∫ e`γ z

z

dt

t
.

One views this as the RHS of the identity in Theorem 1.
We define

G :=

∫ b+

a−

dt

t

and

H :=

∫ e`γ a+

b+

dt

t
.

Remarks

(1) One can show that G is the length of the arc between P and P ′ and H the
length of the arc between P ′ and R. The proof is by choosing the sequences
of geodesics in the spinning construction carefully and is left to the reader.
Moreover, these are related to Mirzikhani’s functions by:

D = 2G, R = G +H.
(2) One can give an interpretation of G in terms of the intrinsic geometry of M

as follows. For m > 0 sufficiently big the cone y > mx, x > 0 projects to
an embedded annulus with boundary components γ and another (simple)
curve γm. Moreover any simple geodesic which enters such annulus never
leaves and in particular the intersection of each of the geodesics bounding
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the thin corner and γm consists of a single point. On the other hand the
length of γm is∫ e`γ z

z

(
1 +

1

m2

)
dt

t
=

(
1 +

1

m2

)
× `γ

and the distance between the two intersection points of the edges of the
thin corner (measured along γm) is G × (1 + 1

m2 ). Similarly one can give a
geometric interpretation of H.

Using our philosophy of viewing the smiler and twister as solutions of the shear
equations, one sees that

H(x, y, z) = G(x, y,−z),
thus it suffices to calculate b+ to determine the gap functions. In the following

sections we use shear coordinates on the thrice punctured sphere to do this.

9. Calculating the gap function D: Proof of Lemma 2

The cusped case
The case when the total shear round the peripheral loop is 0, so that `(γ) = 0, is

perhaps easiest to understand. We can actually carry out the calculation without
lifting to H2. Recall (see [5]) that the cusp region of area 2 is foliated by concentric
horocylces. The corners of embedded ideal triangles map into the cusp region in
such a way that the leaves of the partial foliation map into leaves of the horocylic
foliation.

Let’s calculate G(0, `α, `β), compare [5]. The osculating leaf bounding the fat
corner in the smiler is contained in a leaf L of the horocyclic foliation. We need
to calculate the proportion of L in the thin corner. If the portion of L in the fat
corner has length 1 then the portion in the thin corner is a leaf of the foliation of
the ideal triangle at height a above the osculating leaf bounding the corner. Thus
this portion has length e−a and we can write

thin corner

fat corner
= e−a.

The total length of L is 1 + e−a < 2, so fraction of the horocycle in the gap is

D(0, `α, `β) :=
exp(−a)

1 + exp(−a)
=

1

1 + exp(a)
=

1

1 + exp(
|`α|+|`β |

2 )
.

Similarly we can calculate H(0, `α, `β) by comparing the fraction of an embedded
horocycle in the companion corner going up the cusp. We see that there is an
embedded horocycle of total length 1 + exp(−a) such that the length of the subleaf
inside our corner is again exp(−a) where a = 1

2 (| `α | − | `β |) since a smiler and a
twister have the same coordinates except for a sign change. Hence:

H(0, `α, `β) :=
1

1 + exp(
|`α|−|`β |

2 )
.

The non cusped case
When the total shear round the peripheral loop representing γ is non zero one

can again find the gap function using shear coordinates. Lift to H2 as in section 4
11



above and let a−, b+ be as defined previously. Using the shear coordinate argument
as in the cusped case

thin corner

fat corner
=

b+ − a−

e`γa− − b+
= e−a,

where a = 1
2 (−`α + `β + `γ). After conjugating Γ if necessary so that a− = e−`γ

1−e−`γ
and using the above equation to solve for b+

b+ =
e−`γ

1− e−`γ
+

1

1 + ea
.

Now

G(`γ , `α, `β) :=

∫ b+

a−

dt

t
= log

(
1 +

1− e−`γ
e−`γ (1 + ea)

)
−log(1) = log

(
1 + e−`γea

e−`γ + e−`γea

)
.

Applying our principle as in the cusped case above for H

H(`γ , `α, `β) = log

(
1 + e−`γea

e−`γ + e−`γea

)
= G(`γ , `α,−`β),

where a = 1
2 (`α − `β + `γ). It is left to the reader to check that the expression for

R = H+ G agrees with that given in the introduction.

10. Conjugation between surfaces groups.

It is a theorem of classical Teichmeuller theory that given a pair of compact
Riemann surfaces (without boundary) of the same genus A,B there is a quasi con-
formal homeomorphism φ : A → B. Lifting to the universal covers one obtains

a quasiconformal homeomorphism φ̂ of the unit disc and this induces a quasisym-
metric homeomorphism Φ : ∂H2 → ∂H2 – the boundary map. In fact this map
conjugates the actions of ρA, ρB on S1 that is :

Φ ◦ ρA(α) ◦ Φ−1 = ρB(α),∀α ∈ π1.
Remarks

(1) The density of fixed points of hyperbolic elements in the limit set Λ ( = S1)
means that Φ is unique.

(2) In a more modern treatment one views the limit set as the Gromov boundary

of the group (see e.g. Mitra [8]) ansd one uses only that φ̂ is a bi-Lipschitz

or even more generally a quasi-isometry. In fact any Lipschitz map φ̂ :
H2 → H2 admits a unique extension to H2 ∪ ∂H2 though this might not be
injective.

Non compact For hyperbolic surfaces A,B of genus g with n > 0 totally geodesic
boundary components one can find Φ that conjugates the actions of ρA, ρB .

For example one can take doubles and use the result for the compact case. Note
that in this case Φ is not unique.

Pinched surfaces, semiconjugacy.

Let M a surface with γ+i ∈ π1(M), 1 ≤ i ≤ n a peripheral system. The results
of our previous paper [5] apply to surfaces N with cusps and we now associate such
a surface to M by pinching off the boundary components to cusps.

More precisely choose an orientation preserving diffeomorphism f : M → N
where N be a Riemann surface with n punctures that takes the peripheral system
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{γ+i } to a peripheral system i.e. f∗(γ
+
i ) is a loop round a puncture. If ρN is a

representation of π1(N) such that N = H2/ρN then ρM (γ+i ) is hyperbolic (i.e. has
two fixed points) whilst ρN ◦ f∗(γ+i ) is parabolic ( i.e. has a single fixed point. )
Conversely if ρN ◦ f∗(α), α ∈ π1 is parabolic then α is conjugate to a power of γ+i
for some i.

After possibly perturbing f in its homotopy class we may assume that it is a K-
Lipschitz diffeomorphism for some K > 0 so that, in particular, the boundary map,

Ψ : ∂H2 → ∂H2, of a lift f̂ : H2 → H2, is well defined. Since we have adopted the
philosophy of working with actions of groups on S1 we want to understand what the
operation on S1 induced by pinching is; that is what is the boundary Ψ like? Recall
that if a, b, c, d ∈ S1 are four distinct points we say that {a, b} separates {c, d} iff
c, d are in different connected components of S1 \{a, b}. A conjugation Φ preserves
separation since it is a bijection and so preserves or reverses the cyclic order on

S1. A semiconjugation Ψ induced by an orientation preserving homeomorphism f̂
preserves separation whenever the four points Ψ(a),Ψ(b),Ψ(c),Ψ(d) are distinct.
In this case we say that Ψ weakly preserves separation. As a corollary Ψ weakly
preserves the cyclic ordering on the circle.

Let ΛM , respectively ΛN , denote the limit set of ρM , respectively ρN . The
regular set of ρM consists of countably many intervals whilst ΛN = ∂H2 since N is
finite area. If I is an connected component of the regular set of ρM then there is
α ∈ π1 conjugate to a γ+i such that the endpoints are the fixed points of ρM (α).
The Ψ sends the fixed points of ρM (α) to the fixed point of ρN (f∗(α)) so that, since
Ψ weakly preserves the order, Ψ(I) is collapsed to a point too.

Lemma 8. Shape of limit sets Let ΛM , respectively ΛN , denote the limit set of
ρM , respectively ρN , and let Ψ be the map constructed above.

(1) ΛN is the whole circle ∂H2.
(2) Ψ(x) is a parabolic point iff x is in the regular set or is a peripheral point in

ΛM . The image of the peripheral points Λper for ρM is the set of peripheral
points for ρN

(3) Ψ−1({y}) consists of more than one point iff y is parabolic. Moreover,
Ψ−1({y}) ∩ ΛM consists of exactly two peripheral points if y is parabolic
and a single point otherwise.

Proof. Evident from the preceding discussion 2

11. Proof of Lemma 4

We just need to see now how the set X̂(p) behaves under our semi conjugacy Ψ
to have all the elements of the proof of Theorem 3. The following is essentially well
known but we include it for completeness:

Lemma 9. Simples preserved Let Ψ be the quasi conjugacy between ρM and ρN
constructed in the previous section. If p ∈ ΛM a peripheral point then

(1) Ψ(X̂(p)) = X̂(Ψ(p))

(2) Ψ(X̂ess(p)) = X̂ess(Ψ(p))
(3) Every peripheral point of lX(p) is isolated so that lXess(p) is closed.

Proof. For (1) we first show that Ψ(X̂(p)) ⊂ X̂(Ψ(p)). Recall that, by definition,

x ∈ X̂(p) iff {p, x} projects to a geodesic α with no self intersections. Suppose that

Ψ(x) /∈ X̂(Ψ(p)) that is {Ψ(p),Ψ(x)} projects to a geodesic with self intersection on
13



H2/ρN . This means there is an element h ∈ π1 such that ρN (h)(Ψ(p)), ρN (h)(Ψ(x))
separates Ψ(p),Ψ(x), i.e. Ψ(ρN (h)(p)),Ψ(ρN (h)(x)) separates Ψ(p),Ψ(x). Since
Ψ preserves separation ρM (h)(p), ρM (h)(x) separate p, x and the intersection of

{ρM (h)(p), ρM (h)(x)} and {p, x} gives a double point for α on M that is x /∈ X̂(p)
To see that Ψ |X̂(p) is a surjection observe that for every y, Ψ−1({y}) contains a

point x ∈ ΛM and the same argument as above shows that x ∈ X(p).
Part (2) follows from Lemma 8 (2). For Xess(p)

c is contained in the peripheral

points of ΛM so Ψ(X̂(p)c) is contained in the parabolic ( = peripheral) points of
ΛN , where the superscript c denotes the complement. So that

Ψ(Xess(p)
c) ∩Ψ(X̂ess(p)) = ∅ ∗

Ψ(Xess(p)
c) ∩ X̂ess(Ψ(p)) = ∅ ∗∗

Now by part (1) and (*),

X̂ess(Ψ(x)) t X̂ess(Ψ(x))c = X̂(Ψ(p)) = Ψ(X(p)) = Ψ(X̂ess(p)) tΨ(X̂ess(p)
c),

and (**) implies Ψ(X̂ess(p)) = X̂ess(Ψ(p)) .

Finally, suppose x ∈ X̂(p) is peripheral and that there exists xn ∈ X̂(p) con-

verging to x. Now Ψ(xn) converges to a parabolic point Ψ(x) ∈ X̂(Ψ(p)). By
[5] Ψ(x) is isolated and so Ψ(xn) is stationnary, that is for all n sufficiently large

Ψ(xn) = Ψ(x). But Ψ−1({Ψ(xn)}) ∩ X̂(p) = Ψ−1({Ψ(x)}) ∩ X(p) consists of at
most two points (Lemma 8(3)) one of which is x. Thus xn is stationnary too and
x is isolated. 2

Proof of Lemma 4: Suppose there is a gap I in X̂ess(p) and let {a, b} be the frontier

of I. Now since X̂ess(p) is closed a, b ∈ X̂ess(p) and Ψ(a),Ψ(b) ∈ X̂ess(Ψ(p)) by
Lemma 9 (2). Observe that a is not a peripheral point so Ψ(a) is not a parabolic
point so Ψ(a) 6= Ψ(b) and Ψ(I) has non empty interior. Since Ψ preserves the

cyclic order on ∂H2 there are no points of Ψ(X̂ess(p)) in Ψ(I) and since X̂(Ψ(p)) =

Ψ(X̂ess(p)) this is a gap in X̂(Ψ(p)). By Theorem 3 (3) Ψ(I) contains a parabolic

point p′ ∈ X̂(Ψ(p)) and Ψ−1({p′}) contains a pair of peripheral points by Lemma

8 (3). At least one of these is in X̂(p) since otherwise, using the same argument as
in Lemma 9 (1) the geodesic joining Ψ(p), p′ projects to a geodesic with a double
point on N . This completes the proof. 2

12. Closing Philosophical Remarks

Informally, our point of view is that Mirzakhani’s identity is to the original
identity 1 as Taylor’s series are to MacLaurin’s series. A priori Taylor’s series are a
generalization of MacLaurin’s series but in practice one deduces Taylor’s theorem
by change of coordinates x 7→ x+a. The role of this change of coordinates is taken
by the choice of a semi conjugacy and Theorem 3 is a corollary of Theorem 4 of [5]
(see Section 7,8). On the other hand to explain the background geometry behind
the trigonometric identities takes more time.

The original identity was a ”happy accident” in the author’s attempts to un-
derstand Thurston’s stretch maps construction [10] and Penner’s arc complex [11]
and most of the exposition in Section 5 dates from that time. The theory has sub-
sequently been elaborated and improved by Bonahon and his students [3][13] see
also [4] for background on laminations. The shear space of an ideal triangulation
is probably the natural place to understand Mirzakhani’s work on volumes for the
following reason. By work of Penner [12] the Weil-Petterson volume form on the
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Teichmueller space of a surface of genus g > 1 with n > 0 cusps is the pull-back
via the shear coordinate map of (a constant multiple of) the usual volume form on
R6g−6+2n.

The approach to proving and generalizing identities via the limit set of (quasi
fuchsian) groups has been developped by Sakuma et al following work of Bowditch
. We do not need to be as careful with our semi conjugacies as they are since
we know that for all our surfaces the Birman-Series theorem holds, so that X(p)
is Hausdorff dimension 0 a priori. In general, one must check that the the semi
conjugacy is Holder continuous as this implies that the image of a set of Hausdorff
dimension 0 is again Hausdorff dimension 0. This is essentially what is used to
prove the identities in the quasi-fuchsian case where length is replaced by complex
length. Our contribution here is to adapt the definitions so that Theorem 4 of [5]
”becomes” Theorem 2 above.

One can prove Theorem (2) under the hypothesis that there is a semi conjugacy
Ψ with a fuchsian group such that the quotient surface has only cusps, and such
that Ψ satisfies the hypothesis of Lemma 8. It is relatively easy to show that such
a Ψ exists for the action at infinity of the fundamental group of a surface of finite
type with non empty boundary and a metric of pinched variable curvature; here
infinity is the ideal boundary of the metric universal cover. However, it is clear that
the gap functions are only interesting in the constant curvature case.
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