
10

Spaces of discrete groups

10.1 Non rigidity phenomena for subgroups of PSL(2,R)

We consider first the family of Hecke groups which we already encountered
before,

Γa =

〈(
1 a
0 1

)
,

(
1 0
a 1

)〉
⊂ PSL(2,R).

One knows that all Γa are free if |a| ≥ 2 hence isomorphic to each other. If
a ∈ Z then Γa ⊂ PSL(2,Z) and thus they are also discrete. However, we claim
that Γ2 and Γa, a > 2 are not conjugate inside PSL(2,R).

Using the Poincaré theorem we can construct Γa by making use of a funda-
mental regions. It is easy to verify that the domain Pa in the figure below is a
fundamental region for Γa having the sides A,B,C,D.

−a/2 −1/a 0 1/a a/2

CB

A D

Let ι : {A,B,C,D} → {A,B,C,D} be the involution given by ι(A) = D,

ι(B) = C, and let us define σA =

(
1 a
0 1

)
and σB =

(
1 0
a 1

)
. Then Γa is naturally

identified with the group generated by σA and σB .
Now, if a > 2 then µ(Pa) = +∞, while for a = 2 we have a

2 = 1
a and thus

the quotient surface is a non-compact cusped surface of finite volume. Thus,
vol(H/Γ2) 6= vol(H/Γa) and thus Γ2 and Γa cannot be conjugate.

Let now consider the group Γ ′2 =

〈(
0 1
−1 1

)
,

(
2 1
1 1

)〉
⊂ PSL(2,R). Then

Γ ′2 has the same fundamental region P2 as Γ2. Moreover the involution ι :
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{A,B,C,D} → {A,B,C,D} which yields Γ ′2 is different from the previous one,

namely ι(A) = C, ι(B) = D. If we consider the matrices σ′
−1
A =

(
0 1
−1 1

)
,

σ′B =

(
2 1
1 1

)
then one verifies easily that Γ ′2 is the group generated by σ′A and

σ′B . The Poincaré theorem implies that Γ ′2 is also free.
However, despite the fact that Γ1 and Γ2 share the same fundamental region

and thus µ(H/Γ2) = µ(H/Γ ′2), these groups are not conjugate within PSL(2,R).
The reason is that H/Γ2 is homeomorphic to a 2-sphere with 3 cusps (i.e.
S2 − {0, 1,∞}) while H/Γ ′2 is a torus with 1-cusp. This follows immediately
by looking at the identifications of sides of the respective fundamental domains
induced by the involution.

If one seeks for families of Fuchsian groups then one needs to fix both the
isomorphism type of the abstract group Γ as well as the homeomorphism type of
the quotient surface H/Γ . If Γ has no elliptic points then H/Γ is an orientable
surface, with the orientation inherited by taking the quotient.

Definition 27. The Teichmüller space T (Σ) of the oriented surface Σ is the
space of marked Fuchsian groups Γ ⊂ PSL(2,R) such that π1Σ → Γ is an
isomorphism and Σ is orientation-preserving homeomorphic to H/Γ . Notice
that a marking of Γ is provided by a system of generators.

An equivalent definition is to set:

Definition 28. The Teichmüller space T (Σ) is the set of marked complex
structures on Σ up to the equivalence relation below. A marked complex struc-
ture is a homotopy equivalence f : Σ → M where M is an arbitrary Riemann
surface and two such f and f ′ : Σ → M ′ are equivalent f ∼ f ′ if there exist a
conformal equivalence h : M →M ′ such that f ′ ' f ◦ h, ' denoting homotopy
equivalence.

By Riemann’s uniformization theorem we can always write M = H/Γ where
Γ ⊂ PSL(2,R) acts by isometries. In particular, we have an identification:

T (Σ) = Hom+
f,d(π1, Σ,PSL(2,R))/conjugacy within PSL(2,R)

where Hom+
f,d(π1, Σ,PSL(2,R)) denotes the space of faithful homomorphisms

ϕ : π1Σ → PSL(2,R) such that ϕ(π1(Σ)) = Γ ⊂ PSL(2,R) is a Fuchsian group
and if ϕ preserves the orientation i.e. the induced homeomorphism Σ → H/Γ
is preserving the orientation.

10.2 Thurston-Bonahon-Penner-Fock coordinates on the
Teichmüller spaces

10.2.1 Preliminaries on fatgraphs

Let Γ be a finite graph. We denote by VΓ and EΓ the set of its vertices and
edges respectively.
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Definition 29. An orientation at a vertex v is a cyclic ordering of the (half-
) edges incident at v. A fatgraph (sometimes called ribbon graph) is a graph
endowed with an orientation at each vertex of Γ . A left-hand-turn path in Γ
is a directed closed path in Γ such that if e1, e2 are successive edges in the path
meeting at v, then e2, e1 are successive edges with respect to the orientation at
v. The ordered pair e1, e2 is called a left-turn. We sometimes call faces of Γ the
left-hand-turn paths and denote them by FΓ .

A fatgraph is usually represented in the plane, by assuming that the orien-
tation at each vertex is the counter-clockwise orientation induced by the plane,
while the intersections of the edges at points other than the vertices are ignored.
There is a natural surface, which we denote by Γ t obtained by thickening the
fatgraph. We usually call Γ t the ribbon graph associated to Γ . We replace the
half-edges around a vertex by thin strips joined at the vertex, whose boundary
arcs have natural orientations. For each edge of the graph we connect the thin
strips corresponding to the vertices by a ribbon which follows the orientation of
their boundaries. We obtain an oriented surface with boundary. The boundary
circles are in one-to-one correspondence with the left-hand-turn paths. If one
caps each left-hand-turn path by a 2-disk we find a closed surface Γ c, and this
explains why we called these paths faces. The centers of the 2-disks will be
called punctures of Γ c and Γ o = int(Γ t) is homeomorphic to the punctured
surface.

There is a canonical embedding Γ ⊂ Γ t, and one can associate to each edge
e of Γ a properly embedded orthogonal arc e⊥ which joins the two boundary
components of the thin strip lying over e. The dual arcs e⊥ divide the ribbon
Γ t into hexagons. When we consider the completion Γ c, we join the boundary
points of these dual arcs to the punctures within each 2-disk face and obtain a
set of arcs connecting the punctures, denoted by the same symbols. Then the
dual arcs divide Γ c into triangles. We set ∆(Γ ) for the triangulation obtained
this way. The vertices of ∆(Γ ) are the punctures of Γ c. Remark that ∆(Γ ) is
well-defined up to isotopy. Now the fatgraph Γ ⊂ Γ t can be recovered from
∆(Γ ) as follows. Mark a point in the interior of each triangle, and connect
points corresponding to adjacent triangles. This procedure works for any given
triangulation ∆ of an oriented surface and produces a fatgraph Γ = Γ (∆) with
the property that ∆(Γ ) = ∆. The orientation of Γ comes from the surface.

If Γ o is the surface Σs
g of genus g with s punctures then by Euler charac-

teristic reasons we have: ]VΓ = 4g − 4 + 2s, ]EΓ = 6g − 6 + 3s, ]FΓ = s.

10.2.2 Coordinates on Teichmüller spaces

Marked ideal triangles

Let us recall that D denotes the unit disk, equipped with the hyperbolic metric.
Recall that any two ideal triangles are isometric, since we may find a Möbius
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transformation, which takes one onto the other. Choose a point on each edge
of the ideal triangle. The chosen points will be called tick-marks.

Definition 30. A marked ideal triangle is an ideal triangle with a tick-mark on
each one of its three sides. An isomorphism between two marked ideal triangles
is an isomorphism between the ideal triangles which preserves the tick-marks.
A standard marked ideal triangle is one which is isometric to the marked ideal
triangle whose vertices in the disk model are given by v1 = 1, v2 = ω, v3 = ω2

and whose tick-marks are t1 = −(2−
√

3), t2 = −(2−
√

3)ω, t3 = −(2−
√

3)ω2,
where ω = e2πi/3.

The ideal triangle and its tick-marks are pictured in figure 10.1 in both the
half-plane model and the disk model; they correspond each other by the map

z 7→ z−(ω+1)
z−(ω̄+1) .

0

i i+1

1

1

ω

ω
2

Fig. 10.1. The standard marked ideal triangle

Coordinates on the Teichmüller space of punctured surfaces

Set T sg for the Teichmüller space of the surface of genus g with s punctures.
Let Γ be a fatgraph with the property that Γ c is a surface of genus g with s
punctures and let S denote the surface Γ c endowed with a hyperbolic structure
of finite volume, having the cusps at the punctures.

As already explained above we have a triangulation ∆(Γ ) associated to
Γ . One deforms the arcs of ∆(Γ ) within their isotopy class in order to make
them geodesic. We shall associate a real number te ∈ R to each edge of ∆(Γ )
(equivalently, to each edge of Γ ). Set ∆v and ∆w for the two triangles sharing
the edge e⊥. We consider next two adjacent lifts of these triangles (which we
denote by the same symbols) to the hyperbolic space H2. Then both ∆v and
∆w are isometric to the standard ideal triangle of vertices v1, v2 and v3. These
two isometries define (by pull-back) canonical tick-marks tv and respectively tw
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on the geodesic edge shared by ∆v and ∆w. Set te for the (real) length of the
translation along this geodesic needed to shift tv to tw. Notice that this geodesic
inherits an orientation as the boundary of the ideal triangle ∆v in H2 which
gives te a sign. If we change the role of v and w the number te is preserved.

An equivalent way to encode the translation parameters is to use the cross-
ratios of the four vertices of the glued quadrilateral ∆v ∪∆w, which are consid-
ered as points of RP 1. It is convenient for us to consider RP 1 as the boundary
of the upper half-plane model of H2, and hence the ideal points have real (or
infinite) coordinates. Let assume that ∆v is the ideal triangle determined by
[p0p−1p∞] and ∆w is [p0p∞p]. We consider then the following cross-ratios:

ze = [p−1, p∞, p, p0] = [p, p0, p−1, p∞] = log− (p0 − p)(p−1 − p∞)

(p∞ − p)(p−1 − p0)
.

This cross-ratio reflects both the quadrilateral geometry and the decomposition
into two triangles. In fact the other possible decomposition into two triangle of
the same quadrilateral leads to the value ze.

The relation between the two translation parameters te and ze is immediate.
Consider the ideal quadrilateral of vertices −1, 0, ez and ∞, whose cross-ratio
is ze = z, where e = [0∞]. The left triangle tick-mark is located at i, while the
right one is located at ie−z, after the homothety sending the triangle into the
standard triangle. Taking in account that the orientation of the edge e is up-side
one derives that te is the signed hyperbolic distance between i and e−zei, which
is ze.

Proposition 25. The map tΓ : T sg → REΓ given by tΓ (S) = (te)e∈EΓ is a

homeomorphism onto the linear subspace REΓ /FΓ ⊂ REΓ given by equations:

tγ :=

n∑
k=1

tek = 0,

for all left-hand-turn closed paths γ ∈ FΓ , which is expressed as a cyclic chain
of edges e1, ..., en.

Remark 34. Notice that there are exactly s left-hand-turn closed paths, which
lead to s independent equations hence the subspace REΓ /FΓ from above is of
dimension 6g − 6 + 2s.

Proof. The map tΓ is continuous, and it suffices to define an explicit inverse for
it. Let Γ be a trivalent fatgraph whose edges are labeled by real numbers r =
(re)e∈EΓ . We want to paste one copy ∆v of the standard marked ideal triangle
on each vertex v of Γ and glue together by isometries these triangles according
to the edges connections. Since the edges of an ideal triangle are of infinite length
we have the freedom to use arbitrary translations along these geodesics when
gluing together adjacent sides. If e = [vw] is an edge of Γ then one can associate
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a real number te ∈ R as follows. There are two tick-marks, namely tv and tw
on the common side of ∆v and ∆w. We denote by te the amount needed for
translating tv into tw according to the orientation inherited as a boundary of∆v.
Given now the collection of real numbers r we can construct unambiguously our
Riemann surface S(Γ, r), which moreover has the property that tΓ (S(Γ, r)) = r.
Furthermore it is sufficient now to check whenever this constructions yields a
complete Riemann surfaces. The completeness at the puncture determined by
the left-hand-turn path γ is equivalent to the condition tγ = 0, and hence the
claim. The cusps of S(Γ ) are in bijection with the left-hand-turn paths in Γ ,
and the triangulation of S(Γ ) obtained by our construction corresponds to Γ .

The Fuchsian group associated to Γ and r

The surface S(Γ, r) is uniformized by a Fuchsian group G = G(Γ, r) ⊂
PSL(2,R), i.e. S(Γ, r) = D/G(Γ, r). We can explicitly determine the genera-
tors of the Fuchsian group, as follows.

We have natural isomorphisms between the fundamental group π1(S(Γ, r)) ∼=
π1(Γ t) ∼= π1(Γ ). Any path γ in Γ is a cyclic sequence of adjacent directed edges
e1, e2, e3, ..., en, where ei and ei+1 have the vertex vi in common. We insert be-
tween ei and ei+1 the symbol lt if ei, ei+1 is a left-hand-turn, the symbol rt if
it is a right-hand-turn and no symbol otherwise (i.e. when ei+1 is ei with the
opposite orientation). Assume now that we have a Riemann surface whose coor-
dinates are tΓ (S) = r. We define then a representation ρr : Π1(Γ )→ PSL(2,R)
of the path groupoid Π1(Γ ) by the formulas:

ρr(e) =

(
0 e

re
2

−e−
re
2 0

)
, and ρr(lt) = ρr(rt)

−1 =

(
1 1
−1 0

)
.

This is indeed well-defined since ρr(e)
2 = −1 = 1 ∈ PSL(2,R), and hence the

orientation of the edge does not matter, and ρr(lt)
3 = ρr(rt)

3 = 1. Furthermore
the fundamental group π1(Γ ) is a subgroup of Π1(Γ ).

Proposition 26. The Fuchsian group G(Γ, r) is ρr(π1(Γ )) ⊂ PSL(2,R).

Proof. We can begin doing the pasting without leaving the hyperbolic plane,
until we get a polygon P , together with a side pairing. We may think of each
triangle as having a white face and a black face, and build the polygon P such
that all the triangles have white face up. We attach to each side pairing (si, sj)
an orientation preserving isometry Aij , such that Aij(si) = sj , Aij sends tick-
marks into the tick-marks shifted by re, and P ∩ Aij(P ) = ∅. Denote by G
the subgroup of Isom+(D) generated by all the side-pairing transformations. In
order to apply the Poincaré Theorem all the vertex-cycle transformations must
be parabolic. This amounts to ask that for every left-hand-turn closed path γ we
have tγ = 0. Then by the Poincaré theorem G is a discrete group of isometries
with P as its fundamental domain and D/G is the complete hyperbolic Riemann
surface S(Γ, r).
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We need now the explicit form of the matrices Aij . We obtain them by
composing the isometries sending a marked triangle into the adjacent one, in
a suitable chain of triangles, where consecutive ones have a common edge. If
e is such an edge we remark that ρr(e) do the job we want, because it sends
the triangle [−1, 0,∞] into [ere ,∞, 0]. Moreover the quadrilateral [−1, 0, ere ,∞],
with this decomposition into two triangles, has associated the cross-ratio re. We
need next to use ρr(lt) which permutes counter-clockwise the tick-marks and
the vertices −1, 0 and ∞ of the ideal triangle. Then one identifies the matrices
Aij with the images of the closed paths by ρr.

Remark 35. We observe that the left-hand-turn paths are preserved under an
isomorphism of graphs which preserves the cyclic orientation at each vertex.
Thus any automorphism of the fatgraph Γ induces an automorphism of S(Γ ).

10.3 Coordinates on the Teichmüller space of surfaces
with geodesic boundary

Set Tg,s;or for the Teichmüller space of surfaces of genus g with s oriented
boundary components. Here or denotes the choice of one orientation for each
of the boundary components. Since the surface has a canonical orientation,
we can set unambiguously or : {1, 2, ..., s} → Z/2Z by assigning or(j) = +1
if the orientation of the j-th component agrees with that of the surface and
or(j) = −1, otherwise. We suppose that each boundary component is a geodesic
in the hyperbolic metric, and possibly a cusp (hence in some sense this space is
slightly completed). Let Γ be a fatgraph with the property that Γ t is a surface of
genus g with s boundary components and let S denote the surface Γ t endowed
with a hyperbolic structure, for which the boundary is geodesic. Assume that,
in this metric, the boundary geodesics bj have length lj .

Consider the restriction of the hyperbolic metric to int(Γ t) = Γ o. Then
Γ o is canonically homeomorphic to the punctured surface Γ c − {p1, ..., ps}. In
particular there is a canonically induced hyperbolic metric on Γ c−{p1, ..., ps},
which we denote by S∗. Moreover this metric is not complete at the punctures
pj . Suppose that the punctures pj corresponds to the left-hand-turn closed paths
γj , or equivalently the boundary components geodesics bj , of length lj . Assume
that we have an ideal triangulation of S∗ by geodesic simplices, whose ideal
vertices are the punctures pj . Then the holonomy of the hyperbolic structure
around the vertex pj is a non-trivial, and it can be calculated in the following
way (see [26], Prop.3.4.18, p.148). Consider a geodesic edge α entering the
puncture and a point p ∈ α. Then the geodesic spinning around pj in the positive
direction (according to the orientation of the boundary circle) is intersecting
again α a first time in the point hpj (p). The hyperbolic distance between the
points p and hpj (p) is the length lj of the boundary circle in the first metric.
Moreover the point hpj (p) lies in the ray determined by p and the puncture pj .
Notice that if we had chose the loop encircling the puncture to go in opposite
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direction then the iterations hpj (p) would have gone faraway from the puncture,
and the length would have been given the negative sign. Set therefore loj∗ for
the signed length.

We construct as above the geodesic ideal triangulation ∆(Γ ) of the non-
complete hyperbolic punctured surface S∗. We can therefore compute the holon-
omy map using the thick-marks on some edge abutting to the puncture pj . It is
immediately that the the holonomy displacement on this edge is given by tγj ,
where γj is the left-hand-turn closed path corresponding to this puncture. In
particular we derive that:

|tγj | = lj , for all j ∈ {1, 2, ..., s}.

Using the method from the previous section we know how to associate to
any edge e of Γ a real number te = te(S

∗) measuring the shift between two
ideal triangles in the geodesic triangulation of the surface S∗.

Proposition 27. The map tΓ : Tg,s;or → REΓ given by tΓ (S) = (te)e∈EΓ is a
homeomorphism.

Proof. The construction of an inverse map proceeds as above. Given r ∈ REΓ we
construct a non-complete hyperbolic surface S∗ with s punctures with the given
parameters, by means of gluing ideal triangles. As shown in ([26], Prop. 3.4.21,
p.150) we can complete this hyperbolic structure to a surface with geodesic
boundary S, such that int(S) = S∗. Further if tγj > 0, then we assign the
orientation of γj for the boundary component bj , otherwise we assign the reverse
orientation. When tγj = 0 it means that we have a cusp at pj .

Remark 36. The two points of Tg,s;or given by the same hyperbolic structure
on the surface Σg,s but with distinct orientations of some boundary compo-
nents lie in the same connected component. Nevertheless the previous formulas
shows that a path connecting them must pass through the points of Tg,s;or
corresponding to surfaces having a cusp at the respective puncture.

Set Tg,s for the Teichmüller space of surfaces of genus g with s non-oriented
boundary components, i.e. hyperbolic metrics for which the boundary compo-
nents are geodesic. There is a simple way to recover coordinates on Tg,s from
its oriented version. Let ψ : REΓ → RFΓ be the map ψ(t) = (tγi)γi∈FΓ . Choose
a projector ψ∗ : REΓ → kerψ = REΓ /FΓ , and set ι|.| : RFΓ → RFΓ for the
map given on coordinates by ι|.|(yj)j=1,]FΓ = (|yj |)j=1,]FΓ . Then Tg,s is the
quotient by the (Z/2Z)FΓ -action on Tg,s;or which changes the orientation of the
boundary components.

Proposition 28. We have a homeomorphism tΓ : Tg,s → R6g−6+2s⊕Rs, which
is induced from the second line of the following commutative diagram:
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Tg,s;or

(ψ∗⊕ψ)◦tΓ
-REΓ /FΓ ⊕ RFΓ

↓ ↓ id⊕ ι|.|
Tg,s -REΓ /FΓ ⊕ RFΓ+

↑ ↑ id⊕ 0

T sg -REΓ /FΓ

Remark 37. Observe that the embedding T sg ↪→ Tg,s given in terms of co-
ordinates by adding on the right a string of zeroes lifts to an embedding
T sg ↪→ Tg,s;or.

Putting together the results of the last two sections we derive that:

Proposition 29. The map tΓ : T sg,n;or → REΓ given by tΓ (S) = (te)e∈EΓ is a
homeomorphism of the Teichmüller space of surfaces of genus g with n oriented
boundary components and s punctures onto the linear subspace REΓ /F∗Γ of di-
mension 6g − 6 + 3n + 2s given by the equations:
tγj = 0, for those left-hand-turn closed paths γj corresponding to the punctures,
γj ∈ F ∗Γ ⊂ FΓ .

Remark 38. W.Thurston associated to an ideal triangulation a system of shear-
ing coordinates for the Teichmüller space in mid eighties (see [27]) and from a
slightly different perspective in Penner’s treatment of the decorated Teichmüller
spaces ([22]). The systematic study of such coordinates appeared later in the
papers of F.Bonahon [2] and V.Fock unraveled in [5] the elementary aspects
of this theory which lead him further to the quantification of the Teichmüller
space.
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The interplay between mapping class groups
and Teichmüller spaces

11.1 Mapping class groups acting on Teichmüller spaces

There is a close relation between mapping class groups and Teichmüller spaces.
The Dehn-Nielsen-Baer theorem provides an identification between Mod(Σ)
and Out+(π1Σ). Then mapping class group acts by left composition on the
space T (Σ) which is a space of group representations, up to conjugacy:

T (Σ) = Hom+
f,d (π1Σ,PSL(2,R)) /PSL(2,R)

Specifically, this action is given by

(ϕ, [ρ]) −→ [ρ ◦ ϕ−1]

Moreover, Mod(Σ) acts by real analytic homeomorphisms. This action is im-
portant in understanding both the algebraic structure of the mapping class
group using the geometry of the Teichmüller space, because of the following
basic result going back to F.Klein and R.Fricke.

Proposition 30 (Fricke-Klein 1889, Kravetz 1959). Mod(Σ) acts properly
discontinuously on T (Σ).

Proof. Let assume that there exist a sequence ϕn ∈ ModΣ so that there exist
two compacts C1, C2 in the Teichmüller space with the property ϕn(C1)∩C2 6= ∅
for all n. Then there exists a convergent sequence of points zn → z ∈ T (Σ) so
that ϕn(zn) also converges to some point w ∈ T (Σ). Thus ϕ−1

n ϕn−1(zn) → z.
We will show that if ξn ∈ ModΣ has the property that ξnzn → z then ξn = 11
for large enough n.

This is a consequence of the following facts:

1. If Γ is a Fuchsian group then the set

A(Γ ) = {Tr(γ); γ ∈ Γ ⊂ PSL(2,R)} ⊂ R+
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is mapped by the function cosh 1
2 (x) bijectively into the marked set of

lengths of geodesics of the surface H/Γ (indexed by elements of Γ ). More-
over, these sets are discrete.

2. If ξ ∈ Mod(Σ) and Γ = ρ(π1Σ) is a Fuchsian group then the marked
set A(ξΓ ) is obtained from the marked set A(Γ ) by a permutation of its
elements.

3. The regular functions tr(ρ(γ)), γ ∈ π1Σ, viewed as functions T (Σ) → R
are generating a polynomial algebra which is finitely generated. The proof
is based on the identity:

tr(x) tr(y) = tr(xy) + tr(xy−1).

4. If ξnzn → z then for large n

A(ξnΓzn) and A(Γs) agree on their first N items

It N is large enough in order that all generators of the algebra above are
contained among the first N items then we find that A(ξnΓzn) = A(Γz).
Since ξn acts as a permutation on the marked sets of geodesics we derive
that the permutation is the identity.

5. Two hyperbolic structures on a surface having the same marked lengths of
geodesics are isometric. In fact, if the traces of two discrete faithful rep-
resentations coincide i.e. tr(ρ(γ) = tr(ρ′(γ)) for any γ ∈ π1(Σ) then the
representations are conjugate.

Remark 39. 1. The Mod(Σg)-action on the Teichmüller space is effective if
g ≥ 3. When g = 1, 2 the hyperelliptic involution acts trivially on T (Σ).

2. The quotient T (Σ)/Mod(Σ) is naturally a complex space with orbifold
singularities (at points where the Mod(Σ) action is not free). However,
one knows that all stabilizers should be finite. In this respect the moduli
space M(Σ) = T (Σ)/Mod(Σ) plays the role of a classifying space for the
mapping class group. For instance, we have an isomorphism

H∗(M(Σ);Q) ' H∗(Mod(Σ);Q)

3. Since T (Σ) is a topological cell each torsion element of Mod(Σ) should
fix a non-empty set. In particular, any periodic mapping class contains a
periodic homeomorphism which is a conformal homeomorphism for some
complex structure on Σ.

References

1. R.Fricke and F.Klein, Vorlesungen über die Theorie der automorphen Funk-
tionen, B.G.Teubner, 1889 and 1926.

2. S.Kravetz, On the geometry of Teichmüller spaces and the structure of their
modular groups, Ann. Acad. Sci. Fenn. 278 (1959), 1–35.



11.2 Stabilizers of the mapping class group action 117

11.2 Stabilizers of the mapping class group action

The action of Mod(Σ) on T (Σ) is properly discontinuous and hence it has finite
stabilizers. A point p in T (Σ) corresponds to a class of marked Riemann surface
p = [S], and we can identify the stabilizer Mod(Σ)p of the point p, as follows:

Mod(Σ)p = {ϕ ∈ Mod(Σ) such that [ϕS] = [S]}

Moreover, S is defined by the holonomy map ρS : π1Σ → PSL(2,R) and so we
have ρϕS = ϕ ◦ ρS , where ϕ is interpreted now as an element of Out+(π1Σ).
Since the marked surfaces determined by ρϕS and ρS are the same they should
be obtained by means of a conjugation within PSL(2,R) i.e. there exists λ =
λϕ ∈ PSL(2,R) so that

ρϕS = λϕρSλ
−1
ϕ

In particular, λϕ belongs to the normalizer of the Fuchsian group ρS(π1S) and
it is immediate that the map

λ : Mod(Σ)p −→ N (ρS(π1Σ)) /ρS(π1Σ)

is a group homomorphism. Actually, we have a more precise result:

Proposition 31. The stabilizer of the class of the marked Riemann surface [S]
is given by

Mod(Σ)p=[S] = Aut(S)

where Aut(S) are the conformal (i.e. holomorphic) automorphism group of S.

In fact, any element of N (Γ )/Γ , Γ Fuchsian group corresponds to an automor-
phism of the Riemann surface (see the section 9.8).

Corollary 18. For a generic Riemann surface S we have Aut(S) = {11}.

Remark 40. It is known that, if the genus of Σ is g ≥ 4, then the local structure
of T (Σ)/Mod(Σ) around p ∈ T (Σ)/Mod(Σ) is described by the quotient
R6g−6/Fp, where Fp ⊂ GL(6g − 6) is a finite group, which is the image of a
faithful linear representation Aut(S)→ GL(6g − 6) (where [S] = p).

In particular, the point p is smooth in the quotient iff S has no automor-
phisms.

A more elaborate analysis shows that the space T (Σ)/Mod(Σ) is singular
at the points when S has automorphisms (as shown by E.Rauch in 1962) for
g ≥ 4. For g = 2 there is only one singular point, corresponding to the Riemann
surface given by the equation:

y2 = x5 − 1

which has additional symmetries with respect to the rest of Riemann surfaces
having only the hyperelliptic involution automorphism. For g = 3 the hyperel-
liptic locus consists of smooth points.
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Furthermore it is known that there exists a finite index subgroup of Mod(Σ)
which acts freely on J (Σ). A quantitative estimate of the index follows from
the following result due to J. P. Serre (1958):

Proposition 32. If ϕ ∈ Mod(Σ)[S] is an automorphism of the Riemann sur-
face S and

ϕ∗ : H1(Σ,Z/`Z) −→ H1(Σ,Z/`Z)

is the identity for some ` ≥ 3 then ϕ = 11. In particular ker(Mod(Σ) →
Aut(H1(Σ;Z/`Z)) ∼= Sp(2g, `)) acts freely on T (Σ) for any ` ≥ 3.

11.3 The Ptolemy modular groupoid

The modular groupoid was considered by Mosher in his thesis and further as a
key ingredient in [18, 19], it is implicit in Harer’s paper on the arc complex (see
[12]) and then studied by Penner (see [22, 23]; notice that the correct definition
is that from [23]) who introduced also the terminology.

Recall that a groupoid is a category whose morphisms are invertible, such
that between any two objects there is at least one morphism. The morphisms
from an object to itself form a group (the group associated to the groupoid).

Remark 41. Suppose that we have an action of a group G on a set M . We
associate a groupoid G(G,M) as follows: its objects are the G-orbits on M , and
the morphisms are the G-orbits of the diagonal action on M ×M . If the initial
action was free then G embeds in G(G,M) as the automorphisms group of any
object.

Assume that we have an ideal triangulation ∆(Γ ) of a surface Σs
g . If e is an

edge shared by the triangles ∆v and ∆w of the triangulation then we change
the triangulation by excising the edge e and replacing it by the other diagonal
of the quadrilateral ∆v ∪∆w, as in figure 11.1. This operation F [e] was called
flip in [5] or elementary by Mosher and Penner.

e
e’

Fig. 11.1. The flip

Let IT (Σs
g)) denote the set of isotopy classes of ideal triangulations of Σs

g .

The reduced Ptolemy groupoid P sg is the groupoid generated by the flips action
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on IT (Σs
g)). Specifically its elements are classes of sequences ∆0, ∆1, ...,∆m,

where ∆j+1 is obtained from ∆j by using a flip. Two sequences ∆0, ...,∆m

and ∆′0, ...,∆
′
n are equivalent if their initial and final terms coincide i.e. there

exists a homeomorphism ϕ preserving the punctures such that ϕ(∆0) ∼= ∆′0 and
ϕ(∆m) ∼= ∆′n, where ∼= denotes the isotopy equivalence. Notice that any two
(isotopy classes of) ideal triangulations are connected by a chain of flips (see [13]
for an elementary proof), and hence P sg is indeed an groupoid. Moreover P sg is
the groupoid G(Ms

g, IT (Σs
g)) associated to the obvious action of the mapping

class group Ms
g on the set of isotopy classes of ideal triangulations IT (Σs

g)).

One problem in considering P sg is that the action ofMs
g on IT (Σs

g)) is not free
but there is a simple way to remedy it. For instance in [18, 19] one adds the
extra structure coming from fixing an oriented arc of the ideal triangulation.
A second problem is that we want that the mapping class group action on the
Teichmüller space extends to a groupoid action.

Consider now an ideal triangulation ∆ = ∆(Γ ), where Γ is its dual fatgraph.
A labelling of ∆ is a numerotation of its edges σΓ : EΓ → {1, 2, ..., ]EΓ }. Set
now LIT (Σs

g)) for the set of labeled ideal triangulations. The Ptolemy groupoid
P sg of the punctured surface Σs

g is the groupoid generated by flips on LIT (Σs
g)).

The flip F [e] associated to the edge e ∈ EΓ acts on the labellings in the obvious
way:

σF [e](Γ )(f) =

{
σΓ (f), if f 6= e′ = F [e](e)
σΓ (e), if f = e′,

According to ([23] Lemma 1.2.b), if 2g−2+s ≥ 2 then any two labeled ideal tri-
angulations are connected by a chain of flips, and thus P sg is indeed a groupoid.
Moreover, this allows us to identify P sg with G(Ms

g,LIT (Σs
g)).

Remark 42. In the remaining cases, namely Σ3
0 and Σ1

1 , the flips are not acting
transitively on the set of labeled ideal triangulations. In this situation an ap-
propriate labelling consist in an oriented arc, as in [18]. The Ptolemy groupoid
associate to this labeling has the right properties, and it acts on the Teichmüller
space.

Proposition 33. We have an exact sequence

1→ S6g−6+3s → P sg → P sg → 1,

where Sn denotes the symmetric group on n letters. Notice that P 1
1 = P1

1
. If

(g, s) 6= (1, 1) then Ms
g naturally embeds in P sg as the group associated to the

groupoid.

Proof. The first part is obvious. The following result is due to Penner ([23],Thm.1.3):

Lemma 48. If (g, s) 6= (1, 1) then Ms
g acts freely on LIT (Σs

g).

Proof. A homeomorphism keeping invariant a labeled ideal triangulation either
preserves the orientation of each arc or else it reverses the orientation of all arcs.
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In fact once the orientation of an arc lying in some triangle is preserved, the
orientation of the other boundary arcs of the triangle must also be preserved.
Further in the first situation either the surface is Σ3

0 (whenM3
0 = 1) or else each

triangle is determined by its 1-skeleton, and the Alexander trick shows that the
homeomorphism is isotopic to identity. In the second case we have to prove that
(g, s) = (1, 1). Since the arcs cannot have distinct endpoints we have s = 1. Let
∆1 be an oriented triangle and D ⊂ ∆1 be a 2-disk which is a slight retraction
of ∆1 into its interior. The image D′ of D cannot lie within ∆1 because the
homeomorphism is globally orientation preserving while the orientation of the
boundary of D′ is opposite to that of ∂∆. Thus D′ lies outside ∆1 and the region
between ∂D′ and ∂∆1 is an annulus, so the complementary of ∆1 consists of
one triangle. Therefore g = 1.

Remark 43. The punctured torus Σ1
1 has an automorphism which reverse the

orientation of each of the three ideal arcs.

The case of the punctured torus is settled by the following:

Proposition 34. Let ∆st = {α1, α2, α3}, where α1 = (1, 0), α2 = (1, 1), α3 =
(0, 1) be the standard labeled ideal triangulation of the punctured torus Σ1

1 =
R2/Z2 − {0}.

1. If ∆ = {ασ(1), ασ(2), ασ(3)} is flip equivalent to ∆st then σ is the identity.
2. A mapping class which leaves invariant ∆st is either identity or −id ∈
SL(2,Z) =M1

1.
3. Let ∆ = {γ1, γ2, γ3} be an arbitrary ideal triangulation. Then there exists

an unique σ(∆) ∈ S3 such that ∆ is flip equivalent with the labeled diagram
{ασ(1), ασ(2), ασ(3)}.

4. In particular if ∆ = ϕ(∆st) then we obtain a group homomorphism σ :
SL(2,Z) → S3, given by σ(ϕ) = σ(ϕ(∆st), whose values can be computed
from:

σ

(
1 1
0 1

)
= (23), σ

(
1 0
1 1

)
= (12), σ

(
0 −1
1 0

)
= (13).

We need therefore another labeling for Σ1
1 , which amounts to fix a distin-

guished oriented edge (d.o.e.) of the triangulation. The objects acted upon flips
are therefore pairs (∆, e), where e is the d.o.e. of ∆. A flip acts on the set of
labeled ideal triangulations with d.o.e. as follows. If the flip leaves e invariant
then the new d.o.e. is the old one. Otherwise the flip under consideration is F [e],
and the new d.o.e. will be the image e′ of e, oriented so that the frame (e, e′) at
their intersection point is positive with respect to the surface orientation. The
groupoid Ptsg generated by flips on (labeled) ideal triangulations with d.o.e. of is
called the extended Ptolemy groupoid. Since any edge permutation is a product
of flips (when (g, s) 6= 1) it follows that any two labeled triangulations with
d.o.e. can be connected by a chain of flips.
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The case of the punctured torus is subjected to caution again: it is more
convenient to define the groupoid Pt11 as that generated by iterated compositions
of flips on the standard (labeled or not) ideal triangulation ∆st of Σ1

1 with a
fixed d.o.e., for instance α1. In fact proposition 34 implies that there are three
distinct orbits of the flips on triangulations with d.o.e., according to the the
position of the d.o.e. within ∆st.

Remark 44. For all (g, s) we have an exact sequence:

1→ Z/2Z→ Ptsg → P sg → 1.

Moreover Ms
g → P sg lifts to an embedding Ms

g ↪→ Ptsg.

Remark 45. We can define the groupoid Ptsg by considering flips on ideal trian-
gulations with d.o.e. without labellings.

Remark 46. The kernel of the mapM1
1 → P 1

1 is the group of order two generated

by

(
0 −1
1 0

)
. Therefore any (faithful) representation of P 1

1 induces a (faithful)

representation of PSL(2,Z).

Remark 47. One reason to consider P sg instead of P sg is that P sg acts on the

Teichmüller space while P sg does not. The other reason is that Ms
g injects into

P sg (if (g, s) 6= (1, 1)). The kernel ofMs
g → P sg is the image of the automorphism

group Aut(Γ ) in Ms
g.

Proof. An automorphism of Γ is a combinatorial automorphism which preserves
the cyclic orientation at each vertex. Notice that an element of Aut(Γ ) induces
a homeomorphism of Γ t and hence an element of Ms

g. Now, if ϕ is in the
kernel then ϕ is described by a permutation of the edges i.e. an element of
ϕ∗ ∈ S]EΓ . One can assume that the orientations of all arcs are preserved by ϕ
when (g, s) 6= (1, 1). Then ϕ∗ completely determines ϕ, by the Alexander trick.
Further ϕ induces an element of Aut(Γ ) whose image in S]EΓ is precisely ϕ∗.
This establishes the claim. Notice that the map Aut(Γ )→ S]EΓ is injective for
most but not for all fatgraphs Γ . The fatgraphs Γ for which the map Aut(Γ )→
S]EΓ fails to be injective are described in [20].

We can state now a presentation for Ptsg which is basically due to Penner
([23]):

Proposition 35. Ptsg is generated by the flips F [e] on the edges. The relations
are:

1. Set J for the change of orientation of the d.o.e. Then

F [F [e]e]F [e] =

{
1, if e is not the d.o.e.
J, if e is the d.o.e.
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2. J2 = 1.
3. Consider the pentagon from picture 11.2, and F [ej ] be the flips on the dotted

edges. Let τ(12) denote the transposition interchanging the labels of the two
edges e1 and f1 from the initial triangulation. Then we have:

F [e1]F [e2]F [e3]F [e4]F [e5] =

{
Jτ(12), if e1 is not the d.o.e.
τ(12), if e1 is the d.o.e.

The action of τ(12) on triangulations with d.o.e. is at follows: if none of
the permuted edges e, f is the d.o.e. then τ(12) leaves the d.o.e. unchanged.
If the d.o.e. is one of the permuted edges, say e, then the new d.o.e. is f
oriented such that e (with the former d.o.e. orientation) and f with the
given d.o.e. orientation form a positive frame on the surface. Notice that
[F [e1]F [e2]F [e3]F [e4]F [e5] = τ(12) even if f1 is the d.o.e.

4. If e and f are disjoint edges then F [e]F [f ] = F [f ]F [e].
5. The relations in a Z/2Z extension of the symmetric group, expressed in

terms of flips. To be more specific, les us assume that the edges are labeled
and the d.o.e. is labelled 0. Then we have:

τ2
(0i) = J, τ2

(ij) = 1, if i, j 6= 0, τ(st)τ(mn) = τ(mn)τ(st) if {m,n}∩{s, t} = ∅,

τ(st)τ(tv)τ(st) = τ(tv)τ(st)τ(tv), if s, t, v are distinct.

6. F [τ(e)]τF [e] = τ , for any label transposition τ (expressed as a product of
flips as above), which says that the symmetric group is a normal subgroupoid
of P sg .

e e

e

1 2

4

e
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Fig. 11.2. The pentagon relation
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Proof. We analyze first the case where labellings are absent:

Lemma 49. P sg is generated by the flips on edges F [e]. The relations are:

1. F [e]2 = 1, which is a fancy way to write that the composition of the flip on
F [e](e) with the flip on e is trivial.

2. F [e1]F [e2]F [e3]F [e4]F [e5] = 1, where F [ei] are the flips considered in the
picture 11.2.

3. Flips on two disjoint edges commute each other.

Proof. This result is due to Harer (see [12]). It was further exploited by Penner
([22, 23]).

The complete presentation is now a consequence of the two exact sequences
from proposition 33 and remark 44, relating P sg , P sg and Psg.

Remark 48. By setting J = 1 above we find the presentation of P sg , with which
we will be mostly concerned in the sequel.

11.4 The mapping class group action on the Teichmüller
spaces

In order to understand the action on T sg we to consider also Tg,s;or.

The action of Ms
g on the Teichmüller space extends to an action of P sg

to T sg . Geometrically we can see it as follows. An element of T sg is a marked
hyperbolic surface S. The marking comes from an ideal triangulation. If we
change the triangulation by a flip, and keep the hyperbolic metric we obtain
another element of T sg .

In the same way theMg,s action on the Teichmüller space Tg,s;or extends to
an action of the Ptolemy groupoid Pg,s. This action is very easy to understand
in terms of coordinates. In more specific terms a flip between the graphs Γ
and Γ ′ induces an analytic isomorphism REΓ → REΓ ′ by intertwining the
coordinate systems tΓ and tΓ ′ . It is more convenient to identify REΓ with a fixed
Euclidean space, which is done by choosing a labelling σ : EΓ → {1, 2, ...]EΓ }
of its edges. Thus we have homeomorphism tΓ,σ : Tg,s;or → R]EΓ given by
(tΓ,σ(S))k = (tΓ (S))σ−1(k)∈EΓ . Further we can compare the coordinates tΓ,σ
and tF (Γ,σ), for two labelled fatgraphs which are related by a flip. We can state:

Proposition 36. A flip acts on the edge coordinates of a fatgraph as follows:

φ( z)

φ( -z)b - 

φ( -z)d - 

z)a +       φ(

cd

a b

-zz

c + 

F
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where φ(z) = log(1 + ez). Here it is understood that the coordinates associated
to the edges not appearing in the picture remain unchanged.

Proof. The flip on the graph corresponds to the following flip of ideal triangu-
lations:

P

P

Q

P

Q

-1

3

8
Q

Q
2

4

0

1

P

P

P

Q

P

Q

-1

3

8

Q

Q
2

4

0

1

P

Then the coordinates a, b, c, d, z using the left-hand-side graph are the following
cross-ratios: a = [Q3, P∞, P0, P−1], b = [Q4, P−1P∞, P0], c = [Q1, P0, P∞, P ],
d = [Q2, P, P0, P∞], z = [P−1, P∞, P, P0]. Let a′, b′, c′, d′, z′ be the coordi-
nates associated to the respective edges from the right-hand-side graph, which
can again be expressed as cross-ratios as follows: a′ = [Q3, P∞, P, P−1], b′ =
[Q4, P−1, P, P0], c = [Q1, P0, P−1, P ], d = [Q2, P, P−1, P∞], z = [P∞, P, P0, P−1].
One uses for simplifying computations the half-plane model where, up to a
Möbius transformation, the points P−1, P∞, P, P0 are sent respectively into
−1,∞, ez and 0. The flip formulas follow immediately.

Remark 49. Similar computations hold for Penner’s λ-coordinates on the dec-
orated Teichmüller spaces. However the transformations of R6g−6+2s obtained
using λ-coordinates are rational functions.

Let us denote by Autω(Rm) the group of real analytic automorphisms of Rm.

Corollary 19. 1. We have a faithful representation ρ :Mg,s → Autω(R6g−6+3s)
induced by the Pg,s action on the Teichmüller space Tg,s;or if (g, s) 6= (1, 1).

2. The groupoid P sg ⊂ Pg,s leaves invariant the Teichmüller subspace T sg ⊂
Tg,s;or. Therefore the formula given in proposition 36 above for the flip
actually yields a representation of P sg into Autω(R6g−6+2s). The restric-
tion to the mapping class groups is a faithful representation ρ : Ms

g →
Autω(R6g−6+2s) if (g, s) 6= (1, 1), and a faithful representation of PSL(2,R)
when (g, s) = (1, 1).

Proof. The representation of Mg,s (respectively Ms
g) is injective because the

mapping class group acts effectively on the Teichmüller space. Therefore if the
class of any (marked) Riemann surface is preserved by a homeomorphism then
this homeomorphism is isotopic to the identity.

The invariance of the subspace T sg ⊂ Tg,s;or by flips is geometrically obvious,
but we write it down algebraically for further use. This amounts to check that



11.5 Deformations of the mapping class group representations 125

the linear equations tγ = 0, for γ ∈ FΓ are preserved. Let γ be a left-hand-turn
path, which intersects the part of the graph shown in the picture, say along
the edges labeled a, z, b. Then the flip of γ intersects the new graph along the
edges labeled by a + φ(z) and b − φ(−z). The claim follows from the equality
z = φ(z)− φ(−z). The remaining three cases reduces to the same equation.

Remark 50. There is a Ptsg-action on the Teichmüller space but it is not free,
and actually factors through P sg .

Remark 51. Assume that there exists an element r ∈ T sg , which is fixed by
some ψ ∈ Ms

g, i.e. ϕ(ψ)(r) = r. Then r is contained in some codimension two
analytic submanifold Qsg ⊂ T sg , and for a given r its isotropy group is finite.
This is a reformulation of the fact that Ms

g acts properly discontinuously on
the Teichmüller space with finite isotropy groups corresponding to the Riemann
surfaces with non-trivial automorphism groups (biholomorphic). Moreover the
locus of Riemann surfaces with automorphisms is a proper complex subvariety
of the Teichmüller space, corresponding to the singular locus of the moduli
space of curves.

11.5 Deformations of the mapping class group
representations

We want to consider deformations of the tautological representation ρ = ρ0 of
Ms

g obtained in the previous section. We first restrict ourselves to deformations
ρh :Ms

g → Autω(R6g−6+2s) satisfying the following requirements:

1. The deformation ρh extends to the Ptolemy groupoid P sg . In particular ρh
is completely determined by ρh(F ) and ρh(τ(ij)).

2. The image of a permutation ρh(τ(ij)) is the automorphism of R6g−6+2s

given by the permutation matrix P(ij), which exchanges the i-th and j-th
coordinates.

3. The image Fh = ρh(F ) of a flip has the same form as for ρ0(F ), namely
that given in the picture from proposition 36, but with a deformed function
φ = φh, with φ0 = log(1 + ez).

4. The linear subspace T sg ⊂ Tg,s;or is invariant by ρh.

Proposition 37. The real function φ : R→ R yield a deformation of the map-
ping class groups (respectively the Ptolemy groupoids) if and only if it satisfies
the following functional equations:

φ(x) = φ(−x) + x. (11.1)

φ(x+ φ(y)) = φ(x+ y − φ(x)) + φ(x). (11.2)

φ (φ (x+ φ(y))− y) = φ(−y) + φ(x). (11.3)

Proof. The first equation is equivalent to the invariance of the linear equations
defining the cusps. The other two equations follow from the cumbersome but
straightforward computation of terms involved in the pentagon equation.
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11.6 Belyi Surfaces

Let S be a compact Riemann surface. It is well known that there exists a non-
constant meromorphic function on S, φ : S → CP1.

Definition 31. The Riemann surface S is a Belyi surface if there exists a ram-
ified covering φ : S → CP1, branched over 0, 1 and ∞.

A surprising theorem of Belyi ([1]) states that:

Theorem 32. S is a Belyi surface if and only if it is defined over Q i.e. as a
curve in CP2 its minimal polynomial lies over some number field.

Following [22, 20] we can characterize Belyi surfaces in terms of fat graphs
as follows:

Theorem 33. A Riemann surface S can be constructed as S(Γ ) = S(Γ,0) for
some trivalent fatgraph Γ if and only if S is a Belyi surface.

Proof. We prove first:

Lemma 50. Let G ⊂ PSL(2,Z) be a finite index torsion-free subgroup. Then
H2/G = S(Γ ) for some trivalent fatgraph Γ .

Proof. Remark that A = {z ∈ H2; 0 < <(z) < 1, |z| > 1, |z − 1| > 1}, is a
fundamental domain for PSL(2,Z), with the property that three copies of it
around ω + 1 fit together to give the ideal marked triangle. These three copies
are equivalent by means of an order three elliptic element γ of PSL(2,Z).

A fundamental domain for G is composed of copies of A, and since G is
torsion free the three copies A, γ(A) and γ2(A) are not equivalent under G,
thus they can all be included in the fundamental domain for G. In particular
it exists a fundamental domain B for G which is made of copies of the ideal
triangle I and hence it is naturally triangulated. Consider the graph Γ dual to
this triangulation, which takes into account the boundary pairings, and which
inherits an orientation from H2/G. Then H2/G = S(Γ ).

Lemma 51. S is a Belyi surface if and only if we can find finitely many points
on S, {p1, . . . , pk}, such that S − {p1, . . . , pk} is isomorphic to H2/G, where G
is a finite index torsion free subgroup of PSL(2,Z).

Proof. Set Γ (2) =

{(
a b
c d

)
∈ PSL(2,Z) |

(
a b
c d

)
≡
(

1 0
0 1

)
(mod 2)

}
. Then

F = {z ∈ H2; 0 < <(z) < 2, |z − 1/2| > 1
2 , |z − 3/2| > 1

2} is a fundamental do-
main for Γ (2) composed of 2 ideal triangles glued along a common edge. Thus
the 3-punctured sphere CP1−{0, 1,∞} is H2/Γ (2). Moreover each ideal triangle
is composed of three copies of the fundamental domain of PSL(2,Z). Therefore,
the 3-punctured sphere is a six-fold branched covering of H2/PSL(2,Z).
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Fig. 11.3. Fundamental domains for PSL(2,Z) and Γ (2)

Let S be a compact Riemann surface. If S is a Belyi surface then S −
{p1, . . . , pk} is a regular smooth finite degree covering of H2/Γ (2) and thus
S − {p1, . . . , pk} = H2/G, where G is a finite-index subgroup of Γ (2) (and
hence of PSL(2,Z)).

Conversely, if S − {p1, . . . , pk} = H2/G, where G is a finite index torsion
free subgroup of PSL(2,Z), then S − {p1, . . . , pk} is a finite-degree branched
covering of H2/PSL(2,Z), which is a sphere with one cusp and 2 ramification
points. Therefore, if we remove the 2 ramification points and their pre-images,
we get that S − {p1, . . . , pk, . . . , pn} is a regular smooth finite-degree covering
of the 3-punctured sphere, i.e. a Belyi surface.

These lemmas show that any Belyi surface can be constructed out of some
fatgraph.

Conversely the fundamental polygon constructed for G(Γ ) is composed of
copies of the ideal triangle. By decomposing each ideal triangle into three copies
of the fundamental domain for PSL(2,Z), we see that G(Γ ) can be embedded
as a finite-index torsion free subgroup of PSL(2,Z).

11.7 The geometry of the Teichmüller space

11.7.1 Symplectic structures for the Teichmüller space of punctured
surfaces

The Teichmüller space T sg has a natural structure of complex manifold. Let us
recall some of its features. Suppose that the Riemann surface S is uniformized
by the Fuchsian group G ⊂ PSL(2,R).

One considers first the vector space Q(S) = Q(G) of integrable holomorphic
quadratic differentials on S. An element ϕ ∈ Q(S) is a holomorphic function
ϕ(z) on H2 satisfying ϕ(γ(z))γ′(z)2 = ϕ(z) for all γ ∈ G, and

∫
F
|ϕ| is finite,
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where F is a fundamental domain for G. Then ϕ induces a symmetric tensor of
type (2, 0) on S.

Let then M(S) be the space of G-invariant Beltrami differentials. These are

measurable, essentially bounded functions µ : H2 → C satisfying µ(γ(z))γ
′(z)
γ′(z) =

µ(z) for all γ ∈ G, and hence define a (−1, 1) tensor on S.

There is a natural pairing (, ) : M(S)×Q(S)→ C given by (µ, ϕ) =
∫
F
µϕ,

with null space N(S) ⊂ M(S) which induces a duality isomorphism between
M(S)/N(S) and Q(S).

The holomorphic cotangent space at the point [S] ∈ T sg is identified with
Q(S) and thus the tangent space is naturally isomorphic to M(S)/N(S). Weil
introduced a hermitian product on Q(S) defined in terms of the Petersson
product for automorphic forms. This yields the Weil-Petersson (co)metric on
T sg :

< ϕ,ψ >=
1

2
Re

∫
H2/G

ϕψ (Imz)−2
, for ϕ,ψ ∈ Q(S).

Remark 52. The Weil-Petersson metric is Kähler, it has negative holomorphic
sectional curvature and is invariant under the action of the mapping class group.

The Kähler form of the Weil-Petersson metric is a symplectic form ωWP . In
the case of closed surfaces Wolpert ([32]) derived a convenient expression for
ωWP in terms of Fenchel-Nielsen coordinates:

ωWP = −
∑
j

d τj ∧ d lj .

Recall that a pair of pants Σ0,3 has a hyperbolic structure with geodesic
boundary. The lengths lj ∈ R+ of the boundary circles can be arbitrarily pre-
scribed. To each decomposition of S into pairs of pants P1, ..., P2g−2 we have
therefore associated the lengths of their boundary geodesics l1, ..., l3g−3. In fact
given pairs of pants, not necessarily distinct, P1 and P2 with boundary circles c1
on P1 and c2 on P2, of the same length we can glue the pants by identifying c1
with c2 by an isometry. The hyperbolic metric extends over the connected sum.
Therefore we can glue together the pants P1, ..., P2g−2 to obtain the Riemann
surface S. If a length l = 0 then this corresponds to the situation where the sur-
face has a cusps. We can therefore extend this description to punctured surfaces
Σn
g with cusps at punctures. The pants decomposition is specified therefore by

3g− 3 +n geodesics on S. Each boundary circle c belongs to two pairs of pants
Pj and Pk. The geodesics joining the circles of Pj to the circles of Pk intersect c
into two points. The parameter τj is the (signed) hyperbolic distance between
these two points. The parameters (τj , lj) are the Fenchel Nielsen coordinates
on T sg .

Fricke and Klein established that, if one carefully choose the curves γ1, ..., γ6g−6+2n

then the associated lengths lj can also give local coordinates on T sg . A typical
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example is to pick up first the curves γ1, ..., γ3g−3+n arising from a pants de-
composition, and then a dual pants decomposition obtained as follows. Consider
the pieces of geodesics which yield the canonical points on the circles, and then
identify combinatorially the canonical points. We obtained this way a family of
closed loops γ3g−3+n+1, ..., γ6g−6+2n. Wolpert ([33],Lemma 4.2, 4.5) expressed
the Kähler form in these coordinates:

Lemma 52. Assume that l1, ..., l6g−6+2n provide local coordinates on T sg and
denote:

αjk =
∑

p∈γj∩γk

cos θp,

where θp is the angle between the geodesic γj and γk at the point p. Let W =
(wjk)j,k be the inverse of the matrix A = (αjk)j,k. Then the Weil-Petersson
form is:

ωWP = −
∑
j<k

wjk d lj ∧ d lk.

11.7.2 Poisson structure for the Teichmüller space of surfaces with
boundary

Let G be a connected Lie group, which will be most of the time PSL(2,R) in
this section. Set M(Σ,G) = Hom(π1(Σ), G)/G for the moduli space of repre-
sentations of the fundamental groups.

Goldman ([8]) proved that M(Σ,G) is endowed with a natural symplectic
structure, whenever Σ is a closed oriented surface. Moreover Fock and Rosly
([6]) was able to show more generally that there is a Poisson structure on
M(Σ,G), even in the case when Σ is a surface with boundary. Furthermore
the symplectic leaves of this structures are precisely the singular submanifolds
M(Σ,G)λ1,...,λs , where λj is the conjugacy class of the holonomy around the
j-th boundary component.

Notice also that Zocca have shown that M(Σ,G) has a pre-symplectic struc-
ture, whose restriction to the symplectic leaves is the symplectic form.

11.7.3 Penner’s decorated Teichmüller space

Penner ([22, 23] considered the space T̃ sg of cusped Riemann surfaces endowed
with a horocycle around each puncture, and called it the decorated Teichmüller
space. There is a natural family of coordinates (called lambda lengths), associ-
ated to the edges of an ideal triangulation ∆ = ∆(Γ ) of the surface. For each
such edge e one puts λe =

√
2exp(δ), where δ is the signed hyperbolic distance

between the two horocycles centered at the two endpoints of the edge e. The
sign convention is that λe > 0 if the horocycles are disjoint. It is not difficult
to see that these coordinates give a homeomorphism T̃ sg → R6g−6+3s. The map

which forgets the horocycles π : T̃ sg → T sg is a fibration having Rs+ as fibers.
Moreover:
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Lemma 53. The projection π is expressed in terms of Penner and Fock coor-
dinates as follows:

π
(
(λe)e∈∆(Γ )

)
=

(
log

λaλc
λbλd

)
e∈∆(Γ )

,

where, for each edge e we considered the quadrilateral of edges a, b, c, d, uniquely
determined by the following properties:

• the cyclic order a, b, c, d is consistent with the orientation of Σs
g .

• e is the diagonal separating a, b from c, d (see the figure 53).
• each triangle of ∆ has an orientation inherited from Σs

g , in particular the
edge e is naturally oriented. We ask that a (and d) be adjacent to the start-
point of e, while b and c is adjacent to the endpoint of e.

a

b

c

d

e

Proof. The proof is a mere calculation.

Proposition 38. The pull-back π∗ωWP of the Weil-Petersson form on the dec-
orated Teichmüller space T̃ sg is given in Penner’s coordinates as:

π∗ωWP = −2
∑
T⊂∆

d log λa ∧ d log λb + d log λb ∧ d log λc + d log λc ∧ d log λa,

where the sum is over all triangles T in ∆ whose edges have lambda lengths
a, b, c in the cyclic order determined by the orientation of Σs

g .

Proof. See [24], Appendix A.

Remark 53. For dimensional reasons the pre-symplectic form π∗ωWP is degen-
erate.

Proposition 39. The Poisson structure on Tg,s;or is given by the following
formula in the Fock coordinates (te):

PWP =
∑
T⊂∆

dta ∧ dtb + dtb ∧ dtc + dtc ∧ dta,

where the sum is over all triangles T in ∆ whose edges are a, b, c in the cyclic
order determined by the orientation of Σs

g . This Poisson structure is degenerate.
Moreover T sg ⊂ Tg,s;or is a symplectic leaf and hence the restriction of PWP is
the Poisson structure dual to the Weil-Petersson symplectic form ωWP .
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12

Riemann surfaces

12.1 Generalities

Note that Radó proved in 1925 that all Riemann surfaces are second-countable.
This cannot be extended to higher dimensions, as Prüfer’s complex surface is
not second-countable.


