Méthodes analytiques en théorie des nombres : Le théorème de la progression arithmétique de Dirichlet

Vincent GAROT et Victor ISSA

Le but de cet exposé sera de démontrer le théorème suivant dû Dirichlet :

Théorème 0.0.1. Soit $m \ge 1$ et a des entiers, soit $P_a(m)$ l'ensemble des nombres premiers $p = a \mod m$ alors :

- $Si\ a \wedge m \neq 1 \ alors\ P_a(m) \ est\ vide.$
- $Si\ a \wedge m = 1\ alors\ P_a(m)\ est\ infini.$

La preuve du théorème fait intervenir des méthodes analytiques classiques de la théorie des nombres et consistera à montrer que la fonction :

$$g_a(s) = \sum_{p \in P_a(m)} \frac{1}{p^s}$$

admet un pôle en s=1.

1 Caractères d'un groupe abélien fini

Définition 1.0.1. Soit G un groupe abélien fini on note $\widehat{G} = Hom(G, \mathbb{C}^{\times})$ le dual de G, les éléments de \widehat{G} sont les caractères de G. Le produit point par point munit \widehat{G} d'une structure de groupe abélien.

Proposition 1.0.2. Soit H un sous-groupe de G, alors le morphisme de restriction $\widehat{G} \longrightarrow \widehat{H}$ est surjectif, c'est à dire que tout caractère de H se prolonge à G.

Proof. On raisonne par récurrence sur l'indice de H, si H est d'indice 1 alors G=H et il n'y a rien à prouver. Supposons que le résultat soit vrai pour les groupes d'indice < n, soit H un groupe d'indice n. Le groupe quotient G/H est d'ordre n donc par le théorème de Lagrange pour tout $x \in G$, $\overline{x}^n = \overline{1}$, c'est à dire $x^n \in H$. Soit $\chi \in \widehat{H}$, on considère le groupe K = < H, x >, K est d'indice < n, donc par hypothèse de récurrence tout caractère de K se prolonge en un caractère de K, il suffit de montrer que K se prolonge en un caractère de K. On a K is eleptit entier vérifiant K is elevated que K elevate entier vérifiant K elevate elevate entier K est d'indice K elevate entier vérifiant K elevate entier vérifiant K elevate elevate entier vérifiant K elevate entier entier

$$\chi(x^{a-b})=\chi(x^m)^d=(w^m)^d=w^{a-b}$$

et comme $\chi(x^{a-b}) = \chi(h')\chi(h)^{-1}$ on en déduit que $\chi(h)w^a = \chi(h')w^b$, ce qui prouve que χ' est bien défini. On a montré que χ se prolongait à K et donc à G par hypothèse de récurrence, cqfd.

Dans la suite on admet que $\#G = \#\widehat{G}$

Proposition 1.0.3. G et $\widehat{\widehat{G}}$ sont canoniquement isomorphe.

Proof. Soit $ev: G \longrightarrow \widehat{G}$ l'application définie par $ev_x(\chi) = \chi(x)$, alors ev un morphisme de groupe, il suffit de vérifier qu'il est injectif. Soit $x \neq 1$ un élément de G d'ordre n, on considère H le groupe engendré par x, soit $\xi \neq 1$ une racine n-ième de l'unité, alors $\chi(x^m) = \xi^m$ défini un caractère de H qui par 1.0.2 s'étend en un caractère χ de G vérifiant $\chi(x) = \xi \neq 1$, ainsi $ev_x(\chi) \neq 1$ ce qui prouve que ev_x est injectif, cqfd.

Proposition 1.0.4 (Relation d'orthogonalité). On a,

•
$$\sum_{g \in G} \chi(g) = \begin{cases} 0 \text{ si } \chi \neq 1 \\ \#G \text{ si } \chi = 1 \end{cases}$$

•
$$\sum_{\chi} \chi(g) = \begin{cases} 0 \text{ si } g \neq 1 \\ \#G \text{ si } g = 1 \end{cases}$$

Proof. • Si $\chi=1$ le résultat est clair, supposons que $\chi\neq 1$ et soit $y\in G$ tel que $\chi(y)\neq 1$. L'application $g\mapsto yg$ est une bijection de G dans lui même de réciproque $g\mapsto y^{-1}g$, ainsi par le changement de variable h=yg on a :

$$\chi(y) \sum_{g \in G} \chi(g) = \sum_{g \in G} \chi(yg) = \sum_{h \in G} \chi(h)$$

et comme $\chi(y) \neq 1$ ceci impose $\sum_{g \in G} \chi(g) = 0$.

• On applique le point précédent au groupe \widehat{G} on obtient que si $g \in G$ alors :

$$\sum_{\chi \in \widehat{G}} ev_g(\chi) = \begin{cases} 0 \text{ si } g \neq 1 \\ \#\widehat{G} \text{ si } g = 1 \end{cases}$$

et comme $\#G = \#\widehat{G}$ on a démontré le résultat voulu.

2 Séries L

Définition 2.0.1. *Soit* $f : \mathbb{N} \to \mathbb{C}$,

• On dit que f est multiplicative lorsque pour tous entiers n et m premiers entre eux on a :

$$f(mn) = f(n)f(m)$$

• On dit que f est complètement multiplicative lorsque pour tous entiers n et m on a :

$$f(mn) = f(n)f(m)$$

Définition 2.0.2. Soit f une fonction multiplicative, la série L associée à f est la fonction holomorphe $L(f,\cdot)$ définie par :

$$L(f,s) = \sum_{n>1} \frac{f(n)}{n^s}$$

On dit que $L(f,\cdot)$ converge absolument en s_0 lorsque la série $\sum_{n\geq 1} \left| \frac{f(n)}{n^{s_0}} \right|$ converge

Proposition 2.0.3. Soit f une fonction multiplicative bornée, sa série L converge absolument sur le demi-plan $Re \ s > 1$ et on a:

$$L(f,s) = \prod_{p} \sum_{\alpha \ge 0} \frac{f(p^{\alpha})}{p^{\alpha s}}$$

Proof. Soit M un majorant de f, on a $\left|\frac{f(n)}{n^s}\right| \leq \frac{M}{n^{Re\ s}}$, donc L(f,.) converge absolument sur le demi-plan $Re\ s > 1$. Si $n = p_1^{\alpha_1} \times \cdots \times p_k^{\alpha_k}$ où les p_j sont des nombres premiers 2 à 2 distincts, alors comme f est multiplicative :

$$f(n) = f(p_1^{\alpha_1}) \times \cdots \times f(p_k^{\alpha_k})$$

Notons E(k) l'ensemble des entiers dont les facteurs premiers sont parmis les k premiers nombres premiers p_1, \ldots, p_k alors pour tout complexe s du demi-plan $Re \ s > 1$, on a :

$$\sum_{n \in E(k)} \frac{f(n)}{n^s} = \sum_{\alpha_1 > 0} \cdots \sum_{\alpha_k > 0} \prod_{i=1}^k \frac{f(p_i^{\alpha_i})}{p_i^{\alpha_i s}} = \prod_{i=1}^k \sum_{\alpha > 0} \frac{f(p_i^{\alpha})}{p_i^{\alpha s}}$$

Lorsque que $k \to +\infty$ le membre de droite converge vers $\prod_p \sum_{\alpha \geq 0} \frac{f(p^{\alpha})}{p^{\alpha s}}$ de plus comme \mathbb{N}^* est la réunion croissante des E(k) le terme de gauche converge vers L(f,s), cqfd.

3 Série L associée à un caractère

Soit G_m le groupe des unités de l'anneau $\mathbb{Z}/m\mathbb{Z}$, on appelle caractère modulo m les carctères de G_m c'est à dire les morphisme

$$G_m \longrightarrow \mathbb{C}^{\times}$$

Un caractère χ modulo m se relève en un fonction complètement multiplicative, il suffit de poser :

$$\overline{\chi}(n) = \begin{cases} \chi(n \bmod m) \text{ lorsque } m \land n = 1\\ 0 \text{ sinon} \end{cases}$$

On confondera χ et $\overline{\chi}$ dans la suite.

Proposition 3.0.1. Si $\chi \neq 1$ est un caractère modulo m, alors sa série L converge absolument dans le demi-plan $Re \ s > 1$ et converge dans le demi-plan $Re \ s > 0$, de plus on a:

$$L(\chi, s) = \prod_{p} \frac{1}{1 - \frac{\chi(p)}{p^s}}$$

Proof. G_m est fini d'ordre $n = \phi(m)$ ainsi si χ est un caractère modulo m on a pour $x \in G_m$, $\chi(x)^n = \chi(x^n) = 1$ donc χ est à valeurs dans le groupe des racines n- ième de l'unité en particulier $\chi(x)$ est de module 1. On en déduit que $\overline{\chi}$ est bornée et complètement multiplicative la proprosition 2.0.3 assure alors que $L(\chi, s)$ converge sur le demi-plan Re s > 1 et que :

$$L(\chi,s) = \prod_{p} \sum_{\alpha \ge 0} \frac{\chi(p^{\alpha})}{p^{\alpha s}}$$

enfin comme χ est complètement multiplicative, on a $\chi(p^{\alpha}) = \chi(p)^{\alpha}$ d'où,

$$\sum_{\alpha \ge 0} \frac{\chi(p^{\alpha})}{p^{\alpha s}} = \sum_{\alpha \ge 0} \left(\frac{\chi(p)}{p^{s}}\right)^{\alpha} = \frac{1}{1 - \frac{\chi(p)}{p^{s}}}$$

Il reste à montrer que $L(\chi,\cdot)$ converge dans le demi-plan $Re\ s>0$, car alors l'expression obtenue dans le demi-plan $Re\ s>1$ sera valide dans le demi-plan $Re\ s>0$ par prolongement analytique. Posons, $X_n=\sum_{k=1}^n \chi(k)$ Par sommation d'Abel on a pour tout entier $N\geq 1$:

$$\sum_{n=1}^{N} \frac{\chi(n)}{n^s} = \sum_{n=1}^{N-1} X_n \left(\frac{1}{n^s} - \frac{1}{(n+1)^s} \right) + \frac{X_N}{N^s}$$

or on a $\frac{1}{n^s} - \frac{1}{(n+1)^s} = \frac{(1+\frac{1}{n})^s - 1}{(n+1)^s} \sim \frac{s}{n^{s+1}}$ donc dès que $Re \ s > 0$ la série $\sum_{n \geq 1} \frac{1}{n^s} - \frac{1}{(n+1)^s}$ converge absolument, ainsi par le critère d'Abel il suffit donc de montrer que X_n est borné pour en déduire que $L(\chi, s)$ converge. Or comme $\chi \neq 1$, par la relation d'othogonalité on a :

$$\sum_{k=n+1}^{n+m} \chi(k) = \sum_{g \in G_m} \chi(g) = 0$$

ainsi $X_{n+m} = X_n$ donc X_n est périodique de période m ce qui conclut.

Proposition 3.0.2. Soit $F(s) = \prod_{p|m} \frac{1}{1-\frac{1}{n^s}}$, on a:

$$L(1,s) = F(s)\zeta(s)$$

En particulier $L(1,\cdot)$ se prolonge analytiquement au demi-plan Re > 0 et admet un pôle simple en s = 1

Proof. Soit $\chi_0 = 1$, χ_0 est complètement multiplicative et bornée par le même calcul que pour la démonstration de la proposition prédédente on a :

$$L(1,s) = \prod_{p} \frac{1}{1 - \frac{\chi_0(p)}{p^s}}$$

De plus on a $\chi_0(p) = 0$ si p|m et $\chi_0(p) = 1$ si $p \wedge m = 1$, ainsi :

$$L(1,s) = \prod_{p \land m=1} \frac{1}{1 - \frac{1}{p^s}}$$

puis comme on peut écire pour $Re \ s > 1$

$$\zeta(s) = \prod_{p} \frac{1}{1 - \frac{1}{p^s}}$$

On a $L(1,s) = F(s)\zeta(s)$ de plus la fonction F est holomorphe sur $Re\ s > 0$ et ne s'y annule pas, comme la fonction ζ se prolonge sur $Re\ s > 0$ en une fonction méromorphe avec un unique pôle en s = 1, on en déduit que L(1,s) se prolonge sur $Re\ s > 0$ avec un unique pôle en s = 1.

En particulier on a montré que si $\chi \neq 1$ alors $L(\chi, 1)$ existe, le point essentiel de la preuve du théorème de Dirichlet est de montrer que $L(\chi, 1) \neq 0$. Dans la suite on fixe un entier $m \geq 1$ et on s'intéresse à l'ensemble des séries $L(\chi, .)$ pour χ parcourant \widehat{G}_m l'ensemble des caractères modulo m, en particulier on pose :

$$\zeta_m(s) = \prod_{\chi} L(\chi, s)$$

Lemme 3.0.3. Si p est premier à m, on note f(p) l'ordre de p dans G_m et g(p) l'indice du groupe engendré par p dans G_m , alors on a :

$$\prod_{\chi} (1 - \chi(p)T) = (1 - T^{f(p)})^{g(p)}$$

Proof. Soit n un entier et \mathcal{U}_n le groupe des racines n-ième de l'unité, on a :

$$1 - T^n = \prod_{\xi \in \mathcal{U}_n} (1 - \xi T)$$

Si $\chi \in \widehat{G}_m$ alors $\chi(\overline{p})^{f(p)} = \chi(\overline{p}^{f(p)}) = 1$ donc $\chi(\overline{p})$ est une racine f(p)-ième de l'unité. Soit ξ une racine f(p)-ième de l'unité, dénombrons l'ensemble des caractères χ vérifiant $\chi(\overline{p}) = \xi$. Soit H le groupe engendré par p dans G_m , puisque H est cyclique, $\chi(\overline{p}^n) = \xi^n$ est l'unique caractère de H vérifiant $\chi(\overline{p}) = \xi$, un tel caractère se prolonge de $[G_m:H] = g(p)$ façons à G_m . Ainsi il existe g(p) caractère de G_m vérifiant $\chi(\overline{p}) = \xi$, ainsi :

$$\prod_{\chi} (1 - \chi(p)T) = \prod_{\xi \in \mathcal{U}_{f(p)}} (1 - \chi T)^{g(p)} = (1 - T^{f(p)})^{g(p)}$$

Lemme 3.0.4. Sur le demi-plan $Re \ s > 1$, on a:

$$\zeta_m(s) = \prod_{p \land m=1} \frac{1}{\left(1 - \frac{1}{p^{f(p)s}}\right)^{g(p)}}$$

Proof. Soit s dans le demi-plan $Re \ s>1$, par les propositions 3.01 et 3.0.2 pour tout $\chi\in \widehat{G}_m:$ $L(\chi,s)=\prod_p \frac{1}{1-\frac{\chi(p)}{p^s}}$ Ainsi,

$$\zeta_m(s) = \prod_{\chi} L(\chi, s) = \prod_{p} \frac{1}{\prod_{\chi} (1 - \frac{\chi(p)}{p^s})}$$

or par le lemme 3.0.3 en $T=\frac{1}{p^s}$ on a pour $p\wedge m=1$ $\prod_{\chi}(1-\frac{\chi(p)}{p^s})=(1-\frac{1}{p^{f(p)s}})^{g(p)}$, de plus si p|m alors pour tout caractère $\chi(p)=0$ donc $\prod_{\chi}(1-\frac{\chi(p)}{p^s})=1$, finalement :

$$\zeta_m(s) = \prod_{p \land m=1} \frac{1}{\left(1 - \frac{1}{p^{f(p)s}}\right)^{g(p)}}$$

Théorème 3.0.5. ζ_m a un pôle simple en s=1 si et seulement si pour tout $\chi \neq 1$, $L(\chi,1) \neq 0$

Proof. Si $\chi \neq 1$ alors $L(\chi, \cdot)$ est holomorphe sur le demi-plan $Re\ s>0$ d'aprés 3.0.1, et si $\chi=1$ alors $L(\chi, \cdot)$ a un pôle simple en s=1 d'aprés 3.0.2. Si il existe un $\chi \neq 1$ tel que $L(\chi,1)=0$ alors $L(\chi, \cdot)L(1, \cdot)$ n'a pas de pôle en 1 et donc ζ_m n'as pas de pôle en 1. Réciproquement si pour tout $\chi \neq 1$, $L(\chi,1) \neq 0$ alors comme $L(1,\cdot)$ admet un pôle en s=1, ζ_m en admet un également.

4 Le théorème de Dirichlet

Proposition 4.0.1. Lorsque $s \to 1$, on a :

$$\sum_{p} \frac{1}{p^s} \sim \log \frac{1}{s-1}$$

Proof. On a $\zeta(s) = \prod_{p = \frac{1}{1 - \frac{1}{p^s}}} \text{donc}$,

$$\log \zeta(s) = \sum_{p} \log \frac{1}{1 - \frac{1}{p^s}} = \sum_{p} \sum_{k>1} \frac{1}{kp^{ks}}$$

On pose $\psi(s) = \sum_{p} \sum_{k \geq 2} \frac{1}{k p^{ks}}$, si $r = Re \ s > 1$ alors :

$$|\psi(s)| \le \sum_{p} \sum_{k>2} \frac{1}{p^{kr}} \le \sum_{k>2} (\zeta(kr) - 1) \le \sum_{k>2} (\zeta(k) - 1)$$

et $\sum_{k\geq 2} (\zeta(k)-1) = \sum_{n\geq 2} \sum_{k\geq 2} \frac{1}{n^k} = \sum_{n\geq 2} \frac{1}{n(n-1)} = 1$, d'où $\psi(s) = O(1)$, ainsi :

$$\log \zeta(s) = \sum_{p} \frac{1}{p^s} + O(1)$$

comme $\log \zeta(s) \sim \log \frac{1}{s-1}$ on en déduit le résultat.

Définition 4.0.2. Soit $A \subset \mathbb{P}$, on dit que A a pour densité $\delta \in \mathbb{R}$ lorsque :

$$\frac{1}{\log \frac{1}{s-1}} \sum_{p \in A} \frac{1}{p^s} \longrightarrow \delta$$

Théorème 4.0.3. On note $P_a(m)$ l'ensemble des premiers p tel que $p = a \mod m$,

- $si\ a \wedge m \neq 1 \ alors\ P_a(m) = \emptyset$
- $si\ a \wedge m = 1\ alors\ P_a(m)\ est\ infini\ et\ a\ pour\ densit\'e\ \frac{1}{\phi(m)}$

On rappelle que $g_a(s) = \sum_{p \in P_a(m)} \frac{1}{p^s}$, pour tout $\chi \in \widehat{G_m}$, posons:

$$f_{\chi}(s) = \sum_{p \wedge m=1} \frac{\chi(p)}{p^s}$$

alors f_{χ} converge dans le demi-plan Re~s>1 et on a le lemme suivant :

Lemme 4.0.4. On $a g_a(s) = \frac{1}{\phi(m)} \sum_{\chi} \chi(a)^{-1} f_{\chi}(s)$

Proof. On a,

$$\sum_{\chi} \chi(a)^{-1} f_{\chi}(s) = \sum_{p \wedge m=1} \frac{1}{p^s} \sum_{\chi} \chi(a^{-1}p)$$

or par la relation d'orthogonalité on a :

$$\sum_{\chi} \chi(a^{-1}p) = \begin{cases} \phi(m) \text{ si } a^{-1}p = 1 \text{ mod } m \\ 0 \text{ sinon} \end{cases}$$

Or la condition $a^{-1}p = 1 \mod m$ signifie exactement que $p \in P_a(m)$ ainsi on a :

$$\sum_{\chi} \chi(a)^{-1} f_{\chi}(s) = \sum_{p \in P_a(m)} \frac{1}{p^s} \phi(m)$$

ce qui conclut la preuve

Lemme 4.0.5. Lorsque $s \longrightarrow 1$ on a,

- $Si \chi = 1 \ alors \ f_{\chi}(s) \sim \log \frac{1}{s-1}$
- $Si \chi \neq 1 \ alors \ f_{\chi}(s) = O(1)$

Proof. • Si $\chi=1$ on a $f_{\chi}(s)=\sum_{p}\frac{1}{p^{s}}+O(1)$ donc par la proposition 4.0.1 on a bien $f_{\chi}(s)\sim\log\frac{1}{s-1}$

• Si $\chi \neq 1$ on a :

$$\log L(\chi, s) = \sum_{p} \log \frac{1}{1 - \frac{\chi(p)}{p^s}} = \sum_{p} \sum_{n \ge 1} \frac{\chi(p)^n}{np^{ns}} = f_{\chi}(s) + \sum_{p \mid m} \frac{\chi(p)}{p^s} + \sum_{p} \sum_{n \ge 2} \frac{\chi(p)^n}{p^{ns}}$$

comme $\chi \neq 1$ d'aprés 3.0.1 log $L(\chi, s)$ est bornée au voisinnage de 1, $\sum_{p|m} \frac{\chi(p)}{p^s}$ est borné donc holomorphe au voisinnage de 1, enfin :

$$\left| \sum_{p} \sum_{n \ge 2} \frac{\chi(p)^n}{p^{ns}} \right| \le \sum_{p} \sum_{n \ge 2} \frac{1}{p^{nRe \ s}} \le 1$$

et donc nécessairement f_{χ} est bornée au voisinnage de s=1.

Preuve du théorème.

En combinant le lemme 4.0.4 au lemme 4.0.3 on obtient que :

$$g_a(s) = \frac{1}{\phi(m)} \log \frac{1}{s-1} + O(1)$$

ce qui prouve le résultat annoncé