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1 Variétés lisses et applications lisses

1.1 Rappels et premieres définitions

Définition 1.1 (Application lisse entre deux ouverts).
Soit U c R¥ et V c R! deux ouverts. Soit f: U — V une application. On dit que f est lisse (ou de
classe C*®) si pour tout n € N et pour tout 1 < iy, ..., i, < n, la dérivée partielle :

onf

6in axin
existe et est continue.

Définition 1.2 (Application lisse).

Soit X ¢ RF et Y C R! deux ensembles quelconques. Soit f: X — Y une application. On dit que
[ est lisse (ou de classe C*®) si pour tout x € X, il existe un voisinage ouvert U de x dans R¥ et une
application lisse F: U — R/ telle que F et f coincident sur X n U.

Proposition 1.3.
e SoitX c R¥, Y c RletZ c R™ trois ensembles. Soit f : X — Yetg: Y — Zdeuxapplications
lisses. Alors la composition go f: X — Z est lisse.
e Soit X C R¥ un ensemble. Alors I'application identité idy : X — X est lisse.

Démonstration.

* Soit x € X. Puisque f est lisse (au sens de la Définition 1.2), il existe un voisinage ouvert U
de x dans R¥ et une application lisse (au sens de la Définition 1.1) F: U - R! qui coincide
avec f sur X N U. On note y := f(x). Puisque g est lisse, il existe un voisinage ouvert V
de y dans R! et une application lisse G: V — R™ qui coincide avec g sur Y n V. On pose
W:=UNF}V)etH:=GoF|y: W — R™. Alors W est un voisinage ouvert de x dans R¥,
et H est bien définie, lisse et coincide avec g o f sur W N X. Donc g o f est lisse.

* Soit x € X. On pose U := RF et F := idg« : R¥ - R¥. Alors U est un voisinage ouvert de x
dans R, et F est lisse et coincide avec idy sur X n U. Donc idy est lisse. O

this looks like cheating
ie never showing the paritial
derivatives of gof are CM\infty



Définition 1.4 (Difféomorphisme).
Soit f: X — Y une application. On dit que f est un difféomorphisme si f est bijective, et f et f~*
sont lisses.

Définition 1.5 (Variété lisse).

Soit M C R. On dit que M est une variété lisse de dimension m si pour tout x € M, il existe un
voisinage ouvert V de x dans M, un ouvert U de R™ et un difféomorphisme g: U — V. Dans ce
contexte, on dit que g est une paramétrisation de V et que g~! est un systéme de coordonnées sur V.

Exemples 1.6.
¢ Lensemble S” C R"**! est une variété lisse de dimension n.
En effet, pour tout x € S", 'ensemble S" \ {—x} est un voisinage ouvert de x dans S", et la
projection stéréographique inverse par rapport au pole nord N := (0, ...,0,1) de S" :

Why not give another example

For SL(2,R) find coordinates

is SL(2,R) a manifold?
for a neighborhood of I_2

ie 1 is aregular value
of det: M(2) >R ?
What does det?-1(0)

looklike ?
qui est donnée par I'application :
20 2%, IyIP-1
:R" > S"\ {NLy:=(y, .0 )|—>< ey ,
P VNEY =003 = DR DR+ 1 Ty

composée avec la rotation qui envoie N sur —x, est un difféomorphisme, et donc une pa-
ramétrisation de S" \ {—x}.

e L'ensemble I' := {(x,sin(1/x)) | x € R\ {0}} est une variété lisse de dimension 1.
En effet, pour tout x € I', 'ensemble I" est un voisinage ouvert de x dans I"et ’application :

g:R\{0}>T;xm (x,sin(%))
why pick this?

est un difféomorphisme, et donc une paramétrisation de I. . .
p P ok it's a bit sauvage but why?

1.2 Espaces tangents et différentielles
1.2.1 Dans le cas d’applications entre deux ouverts

Définition 1.7 (Différentielle d'une application entre deux ouverts).
Soit U ¢ R¥ et V c R! deux ouverts. Soit f: U — V une application lisse. Pour tout x € U,
on appelle différentielle de f en x I’application linéaire df, : R¥ — R! telle que pour tout h € R¥
suffisamment petit :

FG+R) = £() + dfel) + 0po(h).

Proposition 1.8.
* Soit U c RK, vV c Rlet W C R™ trois ouverts. Soit f: U — Vetg: V — Wdeuxapplications
lisses. Alors pour tout x € U:

d(g ° f)x = dgf(x) odfy.
C’est-a-dire, pour tout diagramme commutatif :
LN

U— > W
gof

Can u show it without using
the implicit function theorem



on a un diagramme commutatif :

Rl
d V{ \dgf(x)
IRk > R™
d(gof)x

e Soit U c U’ c R¥ deux ouverts. Soiti: U — U’ l'application inclusion. Alors pour tout
x € U, la différentielle di, : R - R¥ est 'application identité.
e Soit L: R¥ — R! une application linéaire. Alors pour tout x € R :

dL, = L.

Démonstration.
e Soit x € U. Pour tout h € R¥ suffisamment petit :

8(f(x + h)) = g(f(x) + dfi(h) + 0po(h))
= g(f(x) + dgy(n(dfie(h) + 0p-0(R) + 04 o(d fi(h) + 0pso(h))
= g(f()) + dg () (dfe(h)) + 0po(h).

Donc d(g e f)x = dgf(x) odfs.
e Soit x € U. Pour tout h € R¥ suffisamment petit :

i(x+h) =x+ h =i(x) + idgk(h).

Donc diy = idk(h).
e Soit x € Rk. Pour tout h € Rk :

L(x + h) = L(x) + L(h).
DoncdL, = L. O

Proposition 1.9.
Soit U ¢ R¥ et V c R! deux ouverts. Soit f: U — V un difféomorphisme. Alors pour tout x € U,
la différentielle df, : R¥ — R! est inversible, et en particulier k = L

Démonstration.
Soit x € U. Alors, d’aprés la Proposition 1.8 :

idpr = d(idy)y = d(f " o )y = d(f D)) 0 dfx
et de la méme maniére :
idg = d(idy) p(xy = d(f o fD) ) = dfic 0 d(f D) pr)-

Donc df; est inversible, de plus R¥ est isomorphe a R!, d’oti k = L. O

Théoréme 1.10 (Théoréme d’inversion locale).

Soit U ¢ R¥ un ouvert. Soit f: U — R! une application lisse. Soit x € U. Si la différentielle df;
est inversible, alors il existe un voisinage ouvert V de x dans U et un voisinage ouvert W de f(x)
dans R! tels que f est un difféomorphisme de V dans W.

3 un mot sur la preuve ?



what about the other definitions
ie the gamma’ for a curve
gamma?

1.2.2 Dans le cas d’applications entre deux variétés lisses

Définition 1.11 (Espace tangent).
Soit M C R¥ une variété lisse de dimension m. Pour tout x € M, on appelle espace tangent @ M en
x 'espace vectoriel de dimension m défini par :

TM, = im(dg,)

ou g: U — W est une paramétrisation d'un voisinage ouvert W de x dans M, avec U C R™ un
ouvert et u := g7!(x). Ici, on considére g comme une application de U dans R™, de maniére a ce
que la différentielle dg, soit bien définie.

Remarque 1.12.
11 faut vérifier que la Définition 1.11 est correcte, c’est-a-dire, que TM, ne dépend pas du choix
de la paramétrisation g et est bien un espace vectoriel de dimension m.

Soit h: V — W' une deuxiéme paramétrisation d"un voisinage ouvert W’ de x dans M. On note
v:=h7l(x). On pose U; := g '(WnW') et { := h}(W n W’). Alors U, est un voisinage ouvert de
u dans R™, 1 est un voisinage ouvert de v dans R™ et h™! o g: U; — ¥ est un difféomorphisme
qui envoie u sur v, d’apres la Proposition 1.8, le diagramme commutatif :

Rk
2N
U > %

h~log

donne le diagramme commutatif :

Rk
R™ = > RM

d(htog)y

et d’apres la Proposition 1.9, la différentielle d(h™! o g),, est inversible, on a :

im(dg,) = im(dh, o d(h™" o g),,) C im(dh,)
lm(dhv) = lm(dgu ° (d(h_l ° g)u)_l) c im(dgv)-
Donc im(dg,) = im(dh,) et TM, ne dépend pas du choix de la paramétrisation g.

Puisque g~! est lisse, il existe un voisinage ouvert W’ de x et une application lisse F: W' — R™
qui coincide avec g~! sur WnW’. On pose U, := g~ {(WnW’). Alors U, est un voisinage ouvert de
xdans R™ et goF: Uy — R™ est’application inclusion, d’apres la Proposition 1.8, le diagramme

commutatif :
27N

Uy ———— S RmM

inclusion

donne le diagramme commutatif :

Rk
R™ > R™
identité

Donc dg, est injective et TM,, est un espace vectoriel de dimension m.

4



Définition 1.13 (Différentielle d'une application entre deux variétés).
Soit M c R¥ et N ¢ R! deux variétés lisses. Soit f : M — N une application lisse. Pour tout x € M,
on appelle différentielle de f en x ’application linéaire dfy, : TM, — TNy définie par :

Vh € TM,, df,(h) = dE,(h)

ou F: X — Rl est une application lisse qui coincide avec f sur M N X, avec X un voisinage ouvert
de x dans M.

Remarque 1.14. that's good!!!
Une nouvelle fois, il faut vérifier que la Définition 1.13 est correcte, c’est-a-dire, que df; est bien
définie et ne dépend pas du choix de I'application F.

Soit g: U — W une paramétrisation d’un voisinage ouvert W de x dans M, et h: V — W' une
paramétrisation d’un voisinage ouvert W’ de f(x) dans N. Quitte a remplacer U et W par des
ensembles plus petits, on peut supposer que W C Xet f(W) c W'. Alors h™' o fog: U — Vest
une application lisse bien définie. On note u := g7'(x) et v := h~!(x). D’apres la Proposition 1.8,
le diagramme commutatif :

F

W—— 70 R

gT Th

U h—1—fg> 1%
donne le diagramme commutatif :

R’CL)RZ

dguT Tdhv

m S R"
d(h~tofog)y

de plus, d’apres la Proposition 1.9, la différentielle dg, est inversible eton a:
dB, = dh, o d(h™' o fog), o (dg,) "

Donc im(dF,) ¢ TM,, et df, est bien définie, et d’apres cette derniere expression, df, ne dépend
pas du choix de l’application F.

Proposition 1.15.
* Soit M ¢ R¥, N c Rl et P ¢ R™ trois variétés lisses. Soit f: M — Netg: N — P deux
applications lisses. Alors pour tout x € M :

d(ge flx = dgf(x) odfy.

e Soit M c M’ c RF deux variétés lisses. Soiti: M — M’ I'application inclusion. Alors pour
tout x € M, on a TM,, C TM;, et di, : TM, — TMj est ’application inclusion.

Démonstration.
* Avec les mémes notations que la Démonstration de la Proposition 1.3, on a :

d(ge f)x=d(GoF), = dGp(x) o dF;, = dgf(x) odfy.

* Avec les mémes notations que la Remarque 1.12, ot U € Rl et V C R™, d’apres la Proposi-
tion 1.8, le diagramme commutatif :




donne le diagramme commutatif :

Rk
‘V w
Rl S RM
d(htog),

Donc im(dg,) = im(dh, o d(h~! 0 g),,) C im(dh,), c’est-a-dire, TM, C TM,.

De la méme maniére, le diagramme commutatif :

M— s M

3 T

U W Vi
donne le diagramme commutatif :

N
™, ——= % TM,

dgu/[\ Tdhv

Rl%ﬂ%m

d(h=log),

Donc di, = dh, o d(h™ 0 g),, o (dg,)~! = idry, est I'application I'inclusion. O

Proposition 1.16.
Soit M ¢ R¥ et N c R! deux variétés lisses de dimension m et n. Soit f : M — N un difféomor-
phisme. Alors pour tout x € M, la différentielle df, est inversible, et en particulier m = n.

Démonstration.
La démonstration est similaire a celle de la Proposition 1.9 O
OK but for other applications
we need maps between
manifolds of different
Définition 1.17 (Points et valeurs réguliers). dimensions
Soit M c R¥ et N c R! deux variétés lisses de méme dimension. Soit f : M — N une application
lisse. Soit x € M ety € N.

* On dit que x est un point régulier de f si la différentielle df, est inversible.

e On dit que y est une valeur réguliére de f si tous les points de f~'(y) sont réguliers.

1.3 Valeurs régulieres

Définition 1.18 (Points et valeurs critiques).
Soit M C R¥ et N c R! deux variétés lisses de méme dimension. Soit f : M — N une application
lisse. Soit x € M ety € N.

* On dit que x est un point critique de f sila différentielle df, n’est pas inversible.

e On dit que y est une valeur critique de f s'il existe un point de f~!(y) qui est critique.

Remarque 1.19.
Si M est compact et y € N est une valeur réguliére de f, alors f~!(y) est un ensemble fini.

Proposition 1.20.
Soit M c R¥ et N c R! deux variétés lisses de méme dimension. Soit f : M — N une application
lisse. Si M est compacte, alors 1’application y — #f~!(y) est localement constante sur I’ensemble

des valeurs régulieres de f.
are we agreed to call

fM-1} the fibre ?
the cardinality of the fibre
is the degree isn't it?



are we agreed to call

fA{-1} the fibre ?

the cardinality of the fibre

is the degree isn't it?
Démonstration.
Soit y € N une valeur réguliére de f. Onnote k := #71(y) et {x1, x,, ..., X} := f~1(y). Alors, d’apres
le Théoreme 1.10, il existe Uy, Uy, ..., Uy des voisinages ouverts respectifs de x;, x,, ... , x; deux-a-
deux disjoints et ¥, ¥, ..., 4 des voisinages ouverts de y dans N tels que pour tout 1 < i < k,
I'application f est un difféomorphisme de U; dans V;. On considere l'ouvert :

V=Unhn--nV)\ M\ (G UG U - Ul)).

Soit y" € V. Par définition des V, puisque les U; sont disjoints, le point y’ a au moins k antécédents
par f. De plus, si par 'absurde y’ avait un autre antécédent par f, alors ce dernier appartiendrait
aM\ (U;uU,U - UUy), en particulier y’ appartiendrait a f(M \ (U; U U, U -+ U Uy)).

Donc y’ a exactement k antécédents par f ety — #f~1(y) est localement constante. O

1.4 Théoréme de d’Alembert-Gauss

Théoréeme 1.21 (Théoréme de d’Alembert-Gauss).
Tout polyndme complexe non constant admet au moins une racine complexe.

Démonstration.

Soit P := a,X" + a,_1 X" + -+ + ay € C[X] un polynéme non constant avec a,, # 0. Pour utiliser
la Proposition 1.20, on veut étudier P sur une variété lisse compacte.

D’apres 'Exemple 1.6, la projection stéréographique par rapport au pole nord N := (0,0,1), que
l'on note hy : S*\ {N} — C, est un difféomorphisme. On consideére 1’application :

R\ (P(hy())) six#N

f:$?2>S%hxm
six=N.

Si f est surjective, alors P admet nécessairement au moins une racine car hy' est bijective.

Par opérations élémentaires, I’application f est lisse sur S$?\ {N}. On montre que f est lisse en N.
On note h_: S*\ {S} - C la projection stéréographique par rapport au pole sud S = (0,0, —1).
Alors h est un difféomorphisme, et on considere 1’application :

Q:C—C;z h_(f(hz\(2))).

Un premier calcul, ou une observation géométrique, donne :
_ 1
h(hZ'(2) = 2
et on en déduit :
1 z"

Q) = h-(h3 (P, (= ) = s = e e

Puisque a, # 0, 'application Q est lisse au voisinage de 0. De plus, on peut écrire f = h='oQoh_.
Donc f est lisse en N.

Si I’ensemble des valeurs réguliéres de f est connexe, d’apres la Proposition 1.20, I’application
y — #f71(y) est constante sur ’'ensemble des valeurs régulieres, si de plus y — #f~1(y) ne s’an-
nule pas, alors f atteint 'ensemble de ses valeurs réguliéres, donc f est surjective.

Puisque P est non constant, le polyndme P’ n’est pas identiquement nul et admet un nombre fini
de racines, d’apres le Théoréme 1.10, en dehors de ces racines P est un difféomorphisme local.
Alors 'ensemble des valeurs réguliéres de f est S? privée d’un nombre fini de points, qui est
connexe. De plus, si par 'absurde y — #f~1(y) est identiquement nulle, alors f n’atteint que ses
valeurs critiques, puisque S? est connexe, on en déduit que f est constante, ce qui contredit le
fait que P est non constant.

\évAf;aiag%the maps what is the degree of 0

" P:S"2->S"2?
ggzt(lhé)l\nzﬁotopy, aren't we just showing it's
surjective?
why don't we use Newton
to find a root?

Donc P admet au moins une racine.

up to hémotopy?
are there maps S*3 ->S*3
without fixed points



