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1 Variétés lisses et applications lisses

1.1 Rappels et premières définitions

Définition 1.1 (Application lisse entre deux ouverts).
Soit 𝑈 ⊂ ℝ𝑘 et 𝑉 ⊂ ℝ𝑙 deux ouverts. Soit 𝑓∶ 𝑈 → 𝑉 une application. On dit que 𝑓 est lisse (ou de
classe 𝐶∞) si pour tout 𝑛 ∈ ℕ et pour tout 1 ⩽ 𝑖1,… , 𝑖𝑛 ⩽ 𝑛, la dérivée partielle :

𝜕𝑛𝑓
𝜕𝑥𝑖1 ⋯𝜕𝑥𝑖𝑛

existe et est continue.

Définition 1.2 (Application lisse).
Soit 𝑋 ⊂ ℝ𝑘 et 𝑌 ⊂ ℝ𝑙 deux ensembles quelconques. Soit 𝑓∶ 𝑋 → 𝑌 une application. On dit que
𝑓 est lisse (ou de classe 𝐶∞) si pour tout 𝑥 ∈ 𝑋, il existe un voisinage ouvert 𝑈 de 𝑥 dans ℝ𝑘 et une
application lisse 𝐹∶ 𝑈 → ℝ𝑙 telle que 𝐹 et 𝑓 coïncident sur 𝑋 ∩ 𝑈.

Proposition 1.3.
• Soit𝑋 ⊂ ℝ𝑘, 𝑌 ⊂ ℝ𝑙 et 𝑍 ⊂ ℝ𝑚 trois ensembles. Soit 𝑓∶ 𝑋 → 𝑌 et 𝑔∶ 𝑌 → 𝑍deux applications

lisses. Alors la composition 𝑔 ∘ 𝑓∶ 𝑋 → 𝑍 est lisse.
• Soit 𝑋 ⊂ ℝ𝑘 un ensemble. Alors l’application identité id𝑋∶ 𝑋 → 𝑋 est lisse.

Démonstration.
• Soit 𝑥 ∈ 𝑋. Puisque 𝑓 est lisse (au sens de la Définition 1.2), il existe un voisinage ouvert 𝑈

de 𝑥 dans ℝ𝑘 et une application lisse (au sens de la Définition 1.1) 𝐹∶ 𝑈 → ℝ𝑙 qui coïncide
avec 𝑓 sur 𝑋 ∩ 𝑈. On note 𝑦 ≔ 𝑓(𝑥). Puisque 𝑔 est lisse, il existe un voisinage ouvert 𝑉
de 𝑦 dans ℝ𝑙 et une application lisse 𝐺∶ 𝑉 → ℝ𝑚 qui coïncide avec 𝑔 sur 𝑌 ∩ 𝑉. On pose
𝑊 ≔ 𝑈 ∩ 𝐹−1(𝑉) et 𝐻 ≔ 𝐺 ∘ 𝐹|𝑊∶ 𝑊 → ℝ𝑚. Alors 𝑊 est un voisinage ouvert de 𝑥 dans ℝ𝑘,
et 𝐻 est bien définie, lisse et coïncide avec 𝑔 ∘ 𝑓 sur 𝑊 ∩ 𝑋. Donc 𝑔 ∘ 𝑓 est lisse.

• Soit 𝑥 ∈ 𝑋. On pose 𝑈 ≔ ℝ𝑘 et 𝐹 ≔ idℝ𝑘 ∶ ℝ𝑘 → ℝ𝑘. Alors 𝑈 est un voisinage ouvert de 𝑥
dans ℝ𝑘, et 𝐹 est lisse et coïncide avec id𝑋 sur 𝑋 ∩ 𝑈. Donc id𝑋 est lisse.
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Définition 1.4 (Difféomorphisme).
Soit 𝑓∶ 𝑋 → 𝑌 une application. On dit que 𝑓 est un difféomorphisme si 𝑓 est bijective, et 𝑓 et 𝑓−1
sont lisses.

Définition 1.5 (Variété lisse).
Soit 𝑀 ⊂ ℝ𝑘. On dit que 𝑀 est une variété lisse de dimension 𝑚 si pour tout 𝑥 ∈ 𝑀, il existe un
voisinage ouvert 𝑉 de 𝑥 dans 𝑀, un ouvert 𝑈 de ℝ𝑚 et un difféomorphisme 𝑔∶ 𝑈 → 𝑉. Dans ce
contexte, on dit que 𝑔 est une paramétrisation de 𝑉 et que 𝑔−1 est un système de coordonnées sur 𝑉.

Exemples 1.6.
• L’ensemble 𝕊𝑛 ⊂ ℝ𝑛+1 est une variété lisse de dimension 𝑛.

En effet, pour tout 𝑥 ∈ 𝕊𝑛, l’ensemble 𝕊𝑛 ∖ {−𝑥} est un voisinage ouvert de 𝑥 dans 𝕊𝑛, et la
projection stéréographique inverse par rapport au pôle nord 𝑁 ≔ (0,… , 0, 1) de 𝕊𝑛 :

𝑦

𝑝(𝑦)

𝑁

qui est donnée par l’application :

𝑝∶ ℝ𝑛 → 𝕊𝑛 ∖ {𝑁}; 𝑦 ≔ (𝑦1, ..., 𝑦𝑛) ↦ (
2𝑦1

‖𝑦‖2 + 1, ...,
2𝑦𝑛

‖𝑦‖2 + 1,
‖𝑦‖2 − 1
‖𝑦‖2 + 1)

composée avec la rotation qui envoie 𝑁 sur −𝑥, est un difféomorphisme, et donc une pa-
ramétrisation de 𝕊𝑛 ∖ {−𝑥}.

• L’ensemble 𝛤 ≔ {(𝑥, sin(1/𝑥)) ∣ 𝑥 ∈ ℝ ∖ {0}} est une variété lisse de dimension 1.
En effet, pour tout 𝑥 ∈ 𝛤, l’ensemble 𝛤 est un voisinage ouvert de 𝑥 dans 𝛤 et l’application :

𝑔∶ ℝ ∖ {0} → 𝛤; 𝑥 ↦ (𝑥, sin ( 1𝑥))

est un difféomorphisme, et donc une paramétrisation de 𝛤.

1.2 Espaces tangents et différentielles

1.2.1 Dans le cas d’applications entre deux ouverts

Définition 1.7 (Différentielle d’une application entre deux ouverts).
Soit 𝑈 ⊂ ℝ𝑘 et 𝑉 ⊂ ℝ𝑙 deux ouverts. Soit 𝑓∶ 𝑈 → 𝑉 une application lisse. Pour tout 𝑥 ∈ 𝑈,
on appelle différentielle de 𝑓 en 𝑥 l’application linéaire d𝑓𝑥∶ ℝ𝑘 → ℝ𝑙 telle que pour tout ℎ ∈ ℝ𝑘

suffisamment petit :
𝑓(𝑥 + ℎ) = 𝑓(𝑥) + d𝑓𝑥(ℎ) + 𝑜ℎ→0(ℎ).

Proposition 1.8.
• Soit 𝑈 ⊂ ℝ𝑘, 𝑉 ⊂ ℝ𝑙 et𝑊 ⊂ ℝ𝑚 trois ouverts. Soit 𝑓∶ 𝑈 → 𝑉 et 𝑔∶ 𝑉 → 𝑊 deux applications

lisses. Alors pour tout 𝑥 ∈ 𝑈 :
d(𝑔 ∘ 𝑓)𝑥 = d𝑔𝑓(𝑥) ∘ d𝑓𝑥.

C’est-à-dire, pour tout diagramme commutatif :

𝑉

𝑈 𝑊

𝑔𝑓

𝑔∘𝑓
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on a un diagramme commutatif :

ℝ𝑙

ℝ𝑘 ℝ𝑚

d𝑔𝑓(𝑥)d𝑓𝑥

d(𝑔∘𝑓)𝑥

• Soit 𝑈 ⊂ 𝑈 ′ ⊂ ℝ𝑘 deux ouverts. Soit 𝑖∶ 𝑈 → 𝑈 ′ l’application inclusion. Alors pour tout
𝑥 ∈ 𝑈, la différentielle d𝑖𝑥∶ ℝ𝑘 → ℝ𝑘 est l’application identité.

• Soit 𝐿∶ ℝ𝑘 → ℝ𝑙 une application linéaire. Alors pour tout 𝑥 ∈ ℝ𝑘 :

d𝐿𝑥 = 𝐿.

Démonstration.
• Soit 𝑥 ∈ 𝑈. Pour tout ℎ ∈ ℝ𝑘 suffisamment petit :

𝑔(𝑓(𝑥 + ℎ)) = 𝑔(𝑓(𝑥) + d𝑓𝑥(ℎ) + 𝑜ℎ→0(ℎ))
= 𝑔(𝑓(𝑥)) + d𝑔𝑓(𝑥)(d𝑓𝑥(ℎ) + 𝑜ℎ→0(ℎ)) + 𝑜ℎ→0(d𝑓𝑥(ℎ) + 𝑜ℎ→0(ℎ))
= 𝑔(𝑓(𝑥)) + d𝑔𝑓(𝑥)(d𝑓𝑥(ℎ)) + 𝑜ℎ→0(ℎ).

Donc d(𝑔 ∘ 𝑓)𝑥 = d𝑔𝑓(𝑥) ∘ d𝑓𝑥.
• Soit 𝑥 ∈ 𝑈. Pour tout ℎ ∈ ℝ𝑘 suffisamment petit :

𝑖(𝑥 + ℎ) = 𝑥 + ℎ = 𝑖(𝑥) + idℝ𝑘(ℎ).

Donc d𝑖𝑥 = idℝ𝑘(ℎ).
• Soit 𝑥 ∈ ℝ𝑘. Pour tout ℎ ∈ ℝ𝑘 :

𝐿(𝑥 + ℎ) = 𝐿(𝑥) + 𝐿(ℎ).

Donc d𝐿𝑥 = 𝐿.

Proposition 1.9.
Soit 𝑈 ⊂ ℝ𝑘 et 𝑉 ⊂ ℝ𝑙 deux ouverts. Soit 𝑓∶ 𝑈 → 𝑉 un difféomorphisme. Alors pour tout 𝑥 ∈ 𝑈,
la différentielle d𝑓𝑥∶ ℝ𝑘 → ℝ𝑙 est inversible, et en particulier 𝑘 = 𝑙.

Démonstration.
Soit 𝑥 ∈ 𝑈. Alors, d’après la Proposition 1.8 :

idℝ𝑘 = d(id𝑈)𝑥 = d(𝑓−1 ∘ 𝑓)𝑥 = d(𝑓−1)𝑓(𝑥) ∘ d𝑓𝑥

et de la même manière :

idℝ𝑙 = d(id𝑉)𝑓(𝑥) = d(𝑓 ∘ 𝑓−1)𝑓(𝑥) = d𝑓𝑥 ∘ d(𝑓−1)𝑓(𝑥).

Donc d𝑓𝑥 est inversible, de plus ℝ𝑘 est isomorphe à ℝ𝑙, d’où 𝑘 = 𝑙.

Théorème 1.10 (Théorème d’inversion locale).
Soit 𝑈 ⊂ ℝ𝑘 un ouvert. Soit 𝑓∶ 𝑈 → ℝ𝑙 une application lisse. Soit 𝑥 ∈ 𝑈. Si la différentielle d𝑓𝑥
est inversible, alors il existe un voisinage ouvert 𝑉 de 𝑥 dans 𝑈 et un voisinage ouvert 𝑊 de 𝑓(𝑥)
dans ℝ𝑙 tels que 𝑓 est un difféomorphisme de 𝑉 dans 𝑊.
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1.2.2 Dans le cas d’applications entre deux variétés lisses

Définition 1.11 (Espace tangent).
Soit 𝑀 ⊂ ℝ𝑘 une variété lisse de dimension 𝑚. Pour tout 𝑥 ∈ 𝑀, on appelle espace tangent à 𝑀 en
𝑥 l’espace vectoriel de dimension 𝑚 défini par :

𝑇𝑀𝑥 ≔ im(d𝑔ᵆ)

où 𝑔∶ 𝑈 → 𝑊 est une paramétrisation d’un voisinage ouvert 𝑊 de 𝑥 dans 𝑀, avec 𝑈 ⊂ ℝ𝑚 un
ouvert et 𝑢 ≔ 𝑔−1(𝑥). Ici, on considère 𝑔 comme une application de 𝑈 dans ℝ𝑚, de manière à ce
que la différentielle d𝑔ᵆ soit bien définie.

Remarque 1.12.
Il faut vérifier que la Définition 1.11 est correcte, c’est-à-dire, que 𝑇𝑀𝑥 ne dépend pas du choix
de la paramétrisation 𝑔 et est bien un espace vectoriel de dimension 𝑚.

Soit ℎ∶ 𝑉 → 𝑊 ′ une deuxième paramétrisation d’un voisinage ouvert 𝑊 ′ de 𝑥 dans 𝑀. On note
𝑣 ≔ ℎ−1(𝑥). On pose 𝑈1 ≔ 𝑔−1(𝑊 ∩𝑊 ′) et 𝑉1 ≔ ℎ−1(𝑊 ∩𝑊 ′). Alors 𝑈1 est un voisinage ouvert de
𝑢 dans ℝ𝑚, 𝑉1 est un voisinage ouvert de 𝑣 dans ℝ𝑚 et ℎ−1 ∘ 𝑔∶ 𝑈1 → 𝑉1 est un difféomorphisme
qui envoie 𝑢 sur 𝑣, d’après la Proposition 1.8, le diagramme commutatif :

ℝ𝑘

𝑈1 𝑉1

𝑔

ℎ−1∘𝑔

ℎ

donne le diagramme commutatif :

ℝ𝑘

ℝ𝑚 ℝ𝑚

d𝑔𝑢

≃
d(ℎ−1∘𝑔)𝑢

dℎ𝑣

et d’après la Proposition 1.9, la différentielle d(ℎ−1 ∘ 𝑔)ᵆ est inversible, on a :

im(d𝑔ᵆ) = im(dℎ𝑣 ∘ d(ℎ−1 ∘ 𝑔)ᵆ) ⊂ im(dℎ𝑣)
im(dℎ𝑣) = im(d𝑔ᵆ ∘ (d(ℎ−1 ∘ 𝑔)ᵆ)−1) ⊂ im(d𝑔𝑣).

Donc im(d𝑔ᵆ) = im(dℎ𝑣) et 𝑇𝑀𝑥 ne dépend pas du choix de la paramétrisation 𝑔.

Puisque 𝑔−1 est lisse, il existe un voisinage ouvert 𝑊 ′ de 𝑥 et une application lisse 𝐹∶ 𝑊 ′ → ℝ𝑚

qui coïncide avec 𝑔−1 sur 𝑊∩𝑊 ′. On pose 𝑈0 ≔ 𝑔−1(𝑊 ∩𝑊 ′). Alors 𝑈0 est un voisinage ouvert de
𝑥 dans ℝ𝑚 et 𝑔∘𝐹∶ 𝑈0 → ℝ𝑚 est l’application inclusion, d’après la Proposition 1.8, le diagramme
commutatif :

𝑊

𝑈0 ℝ𝑚

𝐹𝑔

inclusion

donne le diagramme commutatif :

ℝ𝑘

ℝ𝑚 ℝ𝑚

d𝐹𝑥d𝑔𝑢

identité

Donc d𝑔ᵆ est injective et 𝑇𝑀𝑥 est un espace vectoriel de dimension 𝑚.
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Définition 1.13 (Différentielle d’une application entre deux variétés).
Soit 𝑀 ⊂ ℝ𝑘 et 𝑁 ⊂ ℝ𝑙 deux variétés lisses. Soit 𝑓∶ 𝑀 → 𝑁 une application lisse. Pour tout 𝑥 ∈ 𝑀,
on appelle différentielle de 𝑓 en 𝑥 l’application linéaire d𝑓𝑥∶ 𝑇𝑀𝑥 → 𝑇𝑁𝑓(𝑥) définie par :

∀ℎ ∈ 𝑇𝑀𝑥, d𝑓𝑥(ℎ) ≔ d𝐹𝑥(ℎ)

où 𝐹∶ 𝑋 → ℝ𝑙 est une application lisse qui coïncide avec 𝑓 sur 𝑀∩𝑋, avec 𝑋 un voisinage ouvert
de 𝑥 dans 𝑀.

Remarque 1.14.
Une nouvelle fois, il faut vérifier que la Définition 1.13 est correcte, c’est-à-dire, que d𝑓𝑥 est bien
définie et ne dépend pas du choix de l’application 𝐹.
Soit 𝑔∶ 𝑈 → 𝑊 une paramétrisation d’un voisinage ouvert 𝑊 de 𝑥 dans 𝑀, et ℎ∶ 𝑉 → 𝑊 ′ une
paramétrisation d’un voisinage ouvert 𝑊 ′ de 𝑓(𝑥) dans 𝑁. Quitte à remplacer 𝑈 et 𝑊 par des
ensembles plus petits, on peut supposer que 𝑊 ⊂ 𝑋 et 𝑓(𝑊) ⊂ 𝑊 ′. Alors ℎ−1 ∘ 𝑓 ∘ 𝑔∶ 𝑈 → 𝑉 est
une application lisse bien définie. On note 𝑢 ≔ 𝑔−1(𝑥) et 𝑣 ≔ ℎ−1(𝑥). D’après la Proposition 1.8,
le diagramme commutatif :

𝑊 ℝ𝑙

𝑈 𝑉

𝐹

𝑔

ℎ−1∘𝑓∘𝑔

ℎ

donne le diagramme commutatif :

ℝ𝑘 ℝ𝑙

ℝ𝑚 ℝ𝑛

d𝐹𝑥

d𝑔𝑢

d(ℎ−1∘𝑓∘𝑔)𝑢

dℎ𝑣

de plus, d’après la Proposition 1.9, la différentielle d𝑔ᵆ est inversible et on a :

d𝐹𝑥 = dℎ𝑣 ∘ d(ℎ−1 ∘ 𝑓 ∘ 𝑔)ᵆ ∘ (d𝑔ᵆ)−1.

Donc im(d𝐹𝑥) ⊂ 𝑇𝑀𝑦 et d𝑓𝑥 est bien définie, et d’après cette dernière expression, d𝑓𝑥 ne dépend
pas du choix de l’application 𝐹.

Proposition 1.15.
• Soit 𝑀 ⊂ ℝ𝑘, 𝑁 ⊂ ℝ𝑙 et 𝑃 ⊂ ℝ𝑚 trois variétés lisses. Soit 𝑓∶ 𝑀 → 𝑁 et 𝑔∶ 𝑁 → 𝑃 deux

applications lisses. Alors pour tout 𝑥 ∈ 𝑀 :

d(𝑔 ∘ 𝑓)𝑥 = d𝑔𝑓(𝑥) ∘ d𝑓𝑥.

• Soit 𝑀 ⊂ 𝑀′ ⊂ ℝ𝑘 deux variétés lisses. Soit 𝑖∶ 𝑀 → 𝑀′ l’application inclusion. Alors pour
tout 𝑥 ∈ 𝑀, on a 𝑇𝑀𝑥 ⊂ 𝑇𝑀′

𝑥 et d𝑖𝑥∶ 𝑇𝑀𝑥 → 𝑇𝑀′
𝑥 est l’application inclusion.

Démonstration.
• Avec les mêmes notations que la Démonstration de la Proposition 1.3, on a :

d(𝑔 ∘ 𝑓)𝑥 = d(𝐺 ∘ 𝐹)𝑥 = d𝐺𝐹(𝑥) ∘ d𝐹𝑥 = d𝑔𝑓(𝑥) ∘ d𝑓𝑥.

• Avec les mêmes notations que la Remarque 1.12, où 𝑈 ⊂ ℝ𝑙 et 𝑉 ⊂ ℝ𝑚, d’après la Proposi-
tion 1.8, le diagramme commutatif :

ℝ𝑘

𝑈1 𝑉1

𝑔

ℎ−1∘𝑔

ℎ

5

that's good!!!



donne le diagramme commutatif :

ℝ𝑘

ℝ𝑙 ℝ𝑚

d𝑔𝑢

d(ℎ−1∘𝑔)𝑢

dℎ𝑣

Donc im(d𝑔ᵆ) = im(dℎ𝑣 ∘ d(ℎ−1 ∘ 𝑔)ᵆ) ⊂ im(dℎ𝑣), c’est-à-dire, 𝑇𝑀𝑥 ⊂ 𝑇𝑀′
𝑥.

De la même manière, le diagramme commutatif :

𝑀 𝑀′

𝑈1 𝑉1

𝑖

𝑔

ℎ−1∘𝑔

ℎ

donne le diagramme commutatif :

𝑇𝑀𝑥 𝑇𝑀′
𝑥

ℝ𝑙 ℝ𝑚

d𝑖𝑥

d𝑔𝑢

d(ℎ−1∘𝑔)𝑢

dℎ𝑣

Donc d𝑖𝑥 = dℎ𝑣 ∘ d(ℎ−1 ∘ 𝑔)ᵆ ∘ (d𝑔ᵆ)−1 = id𝑇𝑀𝑥 est l’application l’inclusion.

Proposition 1.16.
Soit 𝑀 ⊂ ℝ𝑘 et 𝑁 ⊂ ℝ𝑙 deux variétés lisses de dimension 𝑚 et 𝑛. Soit 𝑓∶ 𝑀 → 𝑁 un difféomor-
phisme. Alors pour tout 𝑥 ∈ 𝑀, la différentielle 𝑑𝑓𝑥 est inversible, et en particulier 𝑚 = 𝑛.

Démonstration.
La démonstration est similaire à celle de la Proposition 1.9

1.3 Valeurs régulières

Définition 1.17 (Points et valeurs réguliers).
Soit 𝑀 ⊂ ℝ𝑘 et 𝑁 ⊂ ℝ𝑙 deux variétés lisses de même dimension. Soit 𝑓∶ 𝑀 → 𝑁 une application
lisse. Soit 𝑥 ∈ 𝑀 et 𝑦 ∈ 𝑁.

• On dit que 𝑥 est un point régulier de 𝑓 si la différentielle d𝑓𝑥 est inversible.
• On dit que 𝑦 est une valeur régulière de 𝑓 si tous les points de 𝑓−1(𝑦) sont réguliers.

Définition 1.18 (Points et valeurs critiques).
Soit 𝑀 ⊂ ℝ𝑘 et 𝑁 ⊂ ℝ𝑙 deux variétés lisses de même dimension. Soit 𝑓∶ 𝑀 → 𝑁 une application
lisse. Soit 𝑥 ∈ 𝑀 et 𝑦 ∈ 𝑁.

• On dit que 𝑥 est un point critique de 𝑓 si la différentielle d𝑓𝑥 n’est pas inversible.
• On dit que 𝑦 est une valeur critique de 𝑓 s’il existe un point de 𝑓−1(𝑦) qui est critique.

Remarque 1.19.
Si 𝑀 est compact et 𝑦 ∈ 𝑁 est une valeur régulière de 𝑓, alors 𝑓−1(𝑦) est un ensemble fini.

Proposition 1.20.
Soit 𝑀 ⊂ ℝ𝑘 et 𝑁 ⊂ ℝ𝑙 deux variétés lisses de même dimension. Soit 𝑓∶ 𝑀 → 𝑁 une application
lisse. Si 𝑀 est compacte, alors l’application 𝑦 ↦ ♯𝑓−1(𝑦) est localement constante sur l’ensemble
des valeurs régulières de 𝑓.
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Démonstration.
Soit 𝑦 ∈ 𝑁 une valeur régulière de 𝑓. On note 𝑘 ≔ ♯𝑓−1(𝑦) et {𝑥1, 𝑥2, ..., 𝑥𝑘} ≔ 𝑓−1(𝑦). Alors, d’après
le Théorème 1.10, il existe 𝑈1, 𝑈2,… ,𝑈𝑘 des voisinages ouverts respectifs de 𝑥1, 𝑥2,… , 𝑥𝑘 deux-à-
deux disjoints et 𝑉1, 𝑉2,… , 𝑉𝑘 des voisinages ouverts de 𝑦 dans 𝑁 tels que pour tout 1 ⩽ 𝑖 ⩽ 𝑘,
l’application 𝑓 est un difféomorphisme de 𝑈𝑖 dans 𝑉𝑖. On considère l’ouvert :

𝑉 ≔ (𝑉1 ∩ 𝑉2 ∩⋯ ∩ 𝑉𝑘) ∖ 𝑓(𝑀 ∖ (𝑈1 ∪ 𝑈2 ∪⋯ ∪ 𝑈𝑘)).

Soit 𝑦′ ∈ 𝑉. Par définition des 𝑉𝑖, puisque les𝑈𝑖 sont disjoints, le point 𝑦′ a au moins 𝑘 antécédents
par 𝑓. De plus, si par l’absurde 𝑦′ avait un autre antécédent par 𝑓, alors ce dernier appartiendrait
à 𝑀 ∖ (𝑈1 ∪ 𝑈2 ∪⋯ ∪ 𝑈𝑘), en particulier 𝑦′ appartiendrait à 𝑓(𝑀 ∖ (𝑈1 ∪ 𝑈2 ∪⋯ ∪ 𝑈𝑘)).
Donc 𝑦′ a exactement 𝑘 antécédents par 𝑓 et 𝑦 ↦ ♯𝑓−1(𝑦) est localement constante.

1.4 Théorème de d’Alembert-Gauss

Théorème 1.21 (Théorème de d’Alembert-Gauss).
Tout polynôme complexe non constant admet au moins une racine complexe.
Démonstration.
Soit 𝑃 ≔ 𝑎𝑛𝑋𝑛 + 𝑎𝑛−1𝑋𝑛−1 +⋯+ 𝑎0 ∈ ℂ[𝑋] un polynôme non constant avec 𝑎𝑛 ≠ 0. Pour utiliser
la Proposition 1.20, on veut étudier 𝑃 sur une variété lisse compacte.
D’après l’Exemple 1.6, la projection stéréographique par rapport au pôle nord 𝑁 ≔ (0, 0, 1), que
l’on note ℎ+∶ 𝕊2 ∖ {𝑁} → ℂ, est un difféomorphisme. On considère l’application :

𝑓 ∶ 𝕊2 → 𝕊2; 𝑥 ↦ {
ℎ−1+ (𝑃(ℎ+(𝑥))) si 𝑥 ≠ 𝑁
𝑁 si 𝑥 = 𝑁.

Si 𝑓 est surjective, alors 𝑃 admet nécessairement au moins une racine car ℎ−1+ est bijective.
Par opérations élémentaires, l’application 𝑓 est lisse sur 𝕊2 ∖ {𝑁}. On montre que 𝑓 est lisse en 𝑁.
On note ℎ−∶ 𝕊2 ∖ {𝑆} → ℂ la projection stéréographique par rapport au pôle sud 𝑆 ≔ (0, 0, −1).
Alors ℎ est un difféomorphisme, et on considère l’application :

𝑄 ∶ ℂ → ℂ; 𝑧 ↦ ℎ−(𝑓(ℎ−1− (𝑧))).

Un premier calcul, ou une observation géométrique, donne :

ℎ+(ℎ−1− (𝑧)) = 1
̄𝑧

et on en déduit :

𝑄(𝑧) = ℎ−(ℎ−1+ (𝑃(ℎ+(ℎ−1− (𝑧))))) = 1
𝑃 (1/ ̄𝑧)

= 𝑧𝑛

𝑎𝑛 + 𝑎𝑛−1𝑧 +⋯+ 𝑎0𝑧𝑛
.

Puisque 𝑎𝑛 ≠ 0, l’application 𝑄 est lisse au voisinage de 0. De plus, on peut écrire 𝑓 = ℎ−1− ∘𝑄∘ℎ−.
Donc 𝑓 est lisse en 𝑁.
Si l’ensemble des valeurs régulières de 𝑓 est connexe, d’après la Proposition 1.20, l’application
𝑦 ↦ ♯𝑓−1(𝑦) est constante sur l’ensemble des valeurs régulières, si de plus 𝑦 ↦ ♯𝑓−1(𝑦) ne s’an-
nule pas, alors 𝑓 atteint l’ensemble de ses valeurs régulières, donc 𝑓 est surjective.
Puisque 𝑃 est non constant, le polynôme 𝑃′ n’est pas identiquement nul et admet un nombre fini
de racines, d’après le Théorème 1.10, en dehors de ces racines 𝑃 est un difféomorphisme local.
Alors l’ensemble des valeurs régulières de 𝑓 est 𝕊2 privée d’un nombre fini de points, qui est
connexe. De plus, si par l’absurde 𝑦 ↦ ♯𝑓−1(𝑦) est identiquement nulle, alors 𝑓 n’atteint que ses
valeurs critiques, puisque 𝕊2 est connexe, on en déduit que 𝑓 est constante, ce qui contredit le
fait que 𝑃 est non constant.
Donc 𝑃 admet au moins une racine.
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