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Résumé

Lors de cette présentation, nous proposons de présenter deux manières diffé-
rentes de prouver un théorème sur les variétés de dimension 1 qui permet de les
classifier (une venant de J. Milnor, l’autre de V. Guillemin et A. Pollack). Enfin,
nous discuterons du cas (plus difficile) des dimensions supérieures.
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I. Preuve de J. Milnor

Dans cette partie, nous nous proposons de prouver la version suivante du
théorème de classification :
Théorème (Classification des variétés de dimension 1 – V.1) — Toute
variété lisse connexe de dimension 1 est difféomorphe au cercle S1 ou à un intervalle
de R (et donc à [0, 1], [0, 1[ ou ]0, 1[).

Pour la preuve de ce théorème, nous fixons M une variété lisse et connexe de
dimension 1 et nous allons utiliser la notion de paramétrisation à vitesse 1 dont
voici la définition :
Définition — Soit I un intervalle de R. Une application f : I → M est une
paramétrisation à vitesse 1 lorsque

1. f(I) est ouvert dans M ;
2. f est un difféomorphisme sur son image ;
3. pour tout t ∈ I, ∥f ′(t)∥ = 1.

Remarque — Toute paramétrisation f : I ′ → M peut être transformée en une
paramétrisation à vitesse 1 par le changement de variable :

u : I ′ −→ R

t 7−→
∫ t

0

∥f ′(s)∥︸ ︷︷ ︸
>0

ds donc u inversible

I := u(I ′)

g := f ◦ u−1 : I → M.

On vérifie alors que pour tout s ∈ I, on a bien

g′(s) =
(
u−1

)′
(s) f ′ (u−1(s)

)
=

1

u′ (u−1(s))
f ′ (u−1(s)

)
=

f ′ (u−1(s)
)

∥f ′ (u−1(s))∥

de norme 1.

Lemme — Soient f : I → M et g : J → M deux paramétrisations à vitesse 1.
Alors f(I) ∩ g(J) a au plus deux composantes connexes et alors

• s’il y a une composante connexe, alors on peut étendre f à une paramétri-
sation à vitesse 1 de f(I) ∪ g(J) ;

• s’il y a deux composantes connexes, alors M est difféomorphe à S1.
Pour une interprétation graphique :
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Figure 1 – Les 3 différentes possibilités

Preuve — Supposons f(I) ∩ g(J) ̸= ∅. Posons alors

Ĩ := {s ∈ I | f(s) ∈ g(J)}
J̃ := {t ∈ J | g(t) ∈ f(I)}

ouverts dans I et J respectivement. On considère alors le difféomorphisme h =
g−1◦f : Ĩ → J̃ . On a alors pour tout t ∈ Ĩ, comme f et g sont des paramétrisations
à vitesse 1,

|h′(t)| = |d(g−1)f(t)(f
′(t))| = ∥f ′(t)∥

∥g′ (g−1(f(t)))∥
= 1.

Puis intéressons-nous à Γ ⊆ Ĩ × J̃ ⊆ I × J défini par

Γ :=
{
(s, t) ∈ Ĩ × J̃ | f(s) = g(t)

}
=

{
(s, h(s)) | s ∈ Ĩ

}
le graphe de h. Puis, en posant

Φ : I × J −→ M
(s, t) 7−→ f(s)− g(t)

qui est continue, on a Γ = Φ−1({0}) et donc Γ est un fermé de I×J . Puis comme
h est de vitesse 1, Γ est donc formé de segments disjoints de pente ±1.

Puis h étant un difféomorphisme, et Ĩ et J̃ étant des ouverts de I et J , on en
déduit que ces segments vont "jusqu’au bord de I × J".

En effet, supposons par l’absurde qu’il existe (s, t) ∈ Γ avec h′(s) = 1 et
δ1 > 0 tels que (s+ δ1, t+ δ1) ∈ (I × J) \ Γ.

On pose
δ0 := inf {δ ⩾ 0 | (s+ δ, t+ δ) /∈ Γ} ⩽ δ1

et par fermeture de Γ dans I × J , (s0, t0) := (s+ δ0, t+ δ0) ∈ ∂
(
(I × J) \ Γ

)
, i.e

(s0, t0) ∈ Γ, et
∀ε > 0, (s0 + ε, t0 + ε) /∈ Γ.

Or Ĩ × J̃ étant un ouvert de I × J , il existe ε > 0 tel que

[s, s0 + ε[×[t, t0 + ε[⊂ Ĩ × J̃ .

3



Comme h est de classe C1 et h′(s) = 1, on a

h′
|[s,s0+ε[ ≡ 1

et pour tout u ∈ [s, s0 + ε[,

h(u) = h(s0) + u− s0 = t0 + u− s0.

En évaluant en u = s0 +
ε
2 , on obtient alors

h
(
s0 +

ε

2

)
= t0 +

ε

2

donc
(
s0 +

ε
2 , t0 +

ε
2

)
∈ Γ, ce qui est absurde. Le cas h′(s) = −1 se traitant de

manière symétrique, on a donc bien obtenu que les segments vont "jusqu’au bord".

I

J

I

J

I

J

Figure 2 – Quelques (fausses) possibilités pour Γ

Cependant, comme Γ est le graphe d’une fonction, on ne saurait être dans le
cas de la figure de gauche ou celle de droite (certains points de I auraient plusieurs
images par h). Notamment, on ne saurait avoir plusieurs segments finissant sur le
même "bord vertical".

De plus, h étant bijective, on ne pourrait pas être dans le cas de la figure du
milieu car alors des points de J auraient plusieurs antécédents par h. Notamment,
au plus un segment peut se finir sur un "bord horizontal".

De ces deux observations, on déduit qu’il y a au plus un segment pouvant se
finir sur chacun des bords et donc que Γ a au plus deux composantes connexes.
De plus, si on a deux composantes connexes, elles ont donc nécessairement même
pentes.

I

J

I

J

I

J

Figure 3 – Quelques (vraies) possibilités pour Γ

Traitons d’abord le cas où Γ a une seule composante connexe (cas de la figure
de gauche dans la figure 3). On peut alors étendre h à une fonction affine de pente

4



±1 notée L : R → R. De plus, f et g ◦L coïncident sur I∩L−1(J), ce qui permet
alors de poser

F : I ∪ L−1(J) −→ f(I) ∪ g(J)

s 7−→
{

f(s) si s ∈ I
g(L(s)) si s ∈ L−1(J)

qui est alors bien une paramétrisation à vitesse 1.

Dans le cas où Γ a deux composantes connexes, remarquons qu’alors, par
injectivité de h, on a nécessairement I et J bornés. On se restreint au cas où la
pente est de 1 (le cas où la pente vaut −1 se traitant de manière symétrique).

γ

δ

α

β

a b c d

Figure 4 – Un exemple pour notre cas

La pente de +1 impose que δ − γ = d− c, et on peut alors translater J pour
supposer que γ = c et δ = d. Dans ce cas, on a alors

inf(I ∪ J) = inf I = a < b ⩽ c < d ⩽ α < β = sup J = sup(I ∪ J).

À t ∈ I ∪ J , on associe θt =
2πt
α−a , et on pose

Φ : S1 −→ M

(cos θt, sin θt) 7−→
{

f (θt) si a < t < d
g (θt) si c < t < α

qui est bien définie car f et g coïncident sur [c, d], et est un difféomorphisme sur
son image. On a donc, comme S1 est compact et Φ est continue, Φ(S1) compact
dans M . Puis on a aussi

Φ(S1) = f(I) ∪ g(J)

donc est un ouvert de M . Comme M est connexe et que Φ(S1) ̸= ∅, on a donc
Φ(S1) = M , d’où le résultat voulu. ■

Preuve (du théorème) — Supposons M ̸∼= S1. Considérons x ∈ M . Comme
M est une variété de dimension 1, on peut paramétrer un petit voisinage de x,
qu’on peut prendre à vitesse 1 par la remarque plus haute.
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Soit f : I → M un paramétrage à vitesse 1, et notons

α := inf I et β := sup I

(non nécessairement atteints). Comme f est 1-lipschitzienne (par l’inégalité des
accroissements finis), limt→β− f(t) existe et on a deux cas :

• si cette limite est dans M , on peut alors étendre, en considérant g un para-
métrage à vitesse 1 autour de cette limite et par le lemme, f à f̃ : Ĩ → M
où sup Ĩ > β ;

• si cette limite n’est pas dans M , on a terminé.
On peut faire de même autour de la limite en α+. On obtient alors une paramé-
trisation à vitesse 1 f : I → M maximale, c’est-à-dire que si I ⊊ I ′, on ne peut
pas étendre f à une paramétrisation à vitesse 1 sur I ′.

▶ Par l’absurde, supposons f non surjective. Comme f(I) est ouvert et non
vide, on a donc f(I) ̸= f(I) et on peut prendre y ∈ f(I) \ f(I), et à nouveau par
le lemme on pourrait étendre f . Cela contredit la maximalité de f . ◀

Ainsi f est surjective, et comme c’est un difféomorphisme sur son image, on
a donc bien M ∼= I. ■

II. Preuve de V. Guillemin et A. Pollack

Dans cette partie, nous donnons rapidement les définitions utiles à la preuve
d’une version un peu modifiée du théorème, donnée par V. Guillemin et A. Pollack,
et utilisant la notion de fonction de Morse :
Théorème (Classification des variétés de dimension 1 – V.2) — Toute
variété de dimension 1 compacte et avec bord est difféomorphe au cercle S1 ou à
un intervalle de R.

On se fixe M une variété de dimension 1 et on donne les deux définitions
utiles :
Définition (Variété avec bord) — Posons déjà le demi-espace fermé de Rn

Hn = {(x1, . . . , xn) ∈ Rn | xn ⩾ 0}.

On définit alors le bord de Hn par ∂Hn = Rn−1 × {0}.
Soit X ⊆ Rk. On dit que X est une variété lisse de dimension n avec bord

lorsque pour tout x ∈ X, il existe un voisinage ouvert de U ∩ X de x dans X
difféomorphe à un ouvert V ∩ Hn de Hn. Le bord de X est alors l’ensemble des
x ∈ X qui sont les antécédents par ce difféomorphisme des points de ∂Hn.
Définition (Fonction de Morse) — Soit f une fonction de classe C2 définie
sur M . On dit que f est une fonction de Morse lorsque pour tout x ∈ M point
critique de f (i.e dfx = 0), la forme quadratique associée à la matrice hessienne
de f en x est non-dégénérée.
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III. Cas de la dimension supérieure

III.a Cas (résolus) des variétés de dimensions 2 et 3

En dimension 2 – on "agite" les mains
Exemple — Considérons la surface d’un objet tridimensionnelle très simple : un
cube. On va alors découper sa surface en polygones les plus simples possibles, par
exemple des triangles – on dit alors qu’on triangule.

Figure 5 – Triangulation d’une face de notre cube

On note alors F le nombre de faces obtenus (ici F = 2 ∗ 6 = 12), A le nombre
d’arêtes (ici A = 12 + 6 = 18) et S le nombre de sommets (ici S = 8). Alors on
a F − A+ S = 2.

Si on refaisait la même chose avec toute surface d’un polyèdre convexe (qui
est homéomorphe à la sphère S1), on obtiendrait toujours F − A+ S = 2.

Définition (Caractéristique d’Euler-Poincaré) — En reprenant les nota-
tions de l’exemple précédent, on peut définir la caractéristique d’Euler-Poincaré
d’une variété M compacte de dimension 2, noté χ(M), par

χ(M) = F − A+ S.

Cette caractéristique est invariante par la forme du pavage (on aurait pu paver
avec des cubes par exemple), et invariante par homéomorphie.

Définition (Variété orientable) — Soit M une variété de dimension 2. On dit
qu’elle est orientable s’il est possible de faire un choix cohérent de vecteur normale
de surface pour pouvoir définir (via la règle de la main droite) une direction "dans
le sens des aiguilles d’une montre".

Exemple — Le tore est une variété orientable. Le ruban de Möbius n’est pas
orientable (on a un "problème" au niveau du recollement de notre ruban).

Théorème — Les variétés compactes connexes orientables de dimension 2 sont
classifiées par leur caractéristique d’Euler-Poincaré. C’est un entier pair ⩽ 2.

Les variétés compactes connexes (sans bord) non orientables de dimension 2
sont classifiées par leur caractéristique d’Euler-Poincaré. C’est un entier ⩽ 1.
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En dimension 3 – Géométrisation et théorème de Perelman

Théorème (de géométrisation de Thurston) — Toute variété de dimension
3 compacte et orientable peut être découpée selon des tores, de telle sorte que
l’intérieur de chaque sous-variété ainsi obtenue soit géométrisable (et suivant une
liste de 8 géométries possibles, telles que la géométrie sphérique, euclidienne, ou
encore hyperbolique par exemple).

Corollaire (Théorème de Perelman) — Toute variété de dimension 3 com-
pacte, sans bord et simplement connexe est homéomorphe à S3.

III.b Et en dimension plus grande que 4 ?
En dimension ⩾ 5, il existe une classification partielle à l’aide de la théorie de

la chirurgie introduite par J. Milnor en 1961. Cela consiste à "couper" une partie
d’une variété, puis de remplacer cette partie par une partie d’une autre variété en
identifiant les frontières.

De façon imagée, cela donne par exemple sur la sphère :

Figure 6 – Source : Wikipédia

En dimension 4, les variétés ne sont pas géométrisables comme dans le cas de
la sous-partie précédente, et la théorie de la chirurgie fonctionne topologiquement
mais pas de manière différentielle. On n’a en fait aucune manière simple de classer
les variétés de dimension 4.
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