Seeking flat tori — a diploid approach

Alba Málaga — with Samuel Lelièvre and Pierre Arnoux

July, 2022

Thanks

Thanks to IMPA, ICERM and CIRM for their help in the realisation of this work.

We thank our universities and the French university system for our permanent jobs.

- Any conformal compact surface can be endowed with a Riemannian metric of constant curvature.
- For a sphere, this metric is unique and has strictly positive curvature
- ▶ Is is easy to give an isometric model in \mathbb{R}^3
- For a surface of genus larger than 1, this metric has strictly negative curvature
- For a torus, this metric has curvature 0

- Any conformal compact surface can be endowed with a Riemannian metric of constant curvature.
- For a sphere, this metric is unique and has strictly positive curvature
- Is is easy to give an isometric model in \mathbb{R}^3
- For a surface of genus larger than 1, this metric has strictly negative curvature
- For a torus, this metric has curvature 0

- Any conformal compact surface can be endowed with a Riemannian metric of constant curvature.
- For a sphere, this metric is unique and has strictly positive curvature
- Is is easy to give an isometric model in \mathbb{R}^3
- For a surface of genus larger than 1, this metric has strictly negative curvature
- For a torus, this metric has curvature 0

- Any conformal compact surface can be endowed with a Riemannian metric of constant curvature.
- For a sphere, this metric is unique and has strictly positive curvature
- Is is easy to give an isometric model in \mathbb{R}^3
- For a surface of genus larger than 1, this metric has strictly negative curvature

For a torus, this metric has curvature 0

- Any conformal compact surface can be endowed with a Riemannian metric of constant curvature.
- For a sphere, this metric is unique and has strictly positive curvature
- Is is easy to give an isometric model in \mathbb{R}^3
- For a surface of genus larger than 1, this metric has strictly negative curvature
- ► For a torus, this metric has curvature 0

\blacktriangleright The universal cover of a flat torus is $\mathbb C$

- \blacktriangleright The torus appears as the quotient \mathbb{C}/Λ
- ▶ Where Λ is a lattice in \mathbb{C}
- One can reconstruct the torus by gluing the boundary of a fundamental domain
- ► For example a parallelogram
- ▶ The space of lattices can be seen as the modular surface $SL(2,\mathbb{Z}) \setminus \mathbb{H}$.

- \blacktriangleright The universal cover of a flat torus is $\mathbb C$
- \blacktriangleright The torus appears as the quotient \mathbb{C}/Λ
- ▶ Where Λ is a lattice in \mathbb{C}
- One can reconstruct the torus by gluing the boundary of a fundamental domain
- ► For example a parallelogram
- ▶ The space of lattices can be seen as the modular surface $SL(2,\mathbb{Z}) \setminus \mathbb{H}$.

- \blacktriangleright The universal cover of a flat torus is $\mathbb C$
- \blacktriangleright The torus appears as the quotient \mathbb{C}/Λ
- Where Λ is a lattice in \mathbb{C}
- One can reconstruct the torus by gluing the boundary of a fundamental domain
- ► For example a parallelogram
- ▶ The space of lattices can be seen as the modular surface $SL(2,\mathbb{Z}) \setminus \mathbb{H}$.

- \blacktriangleright The universal cover of a flat torus is $\mathbb C$
- \blacktriangleright The torus appears as the quotient \mathbb{C}/Λ
- Where Λ is a lattice in \mathbb{C}
- One can reconstruct the torus by gluing the boundary of a fundamental domain
- ► For example a parallelogram
- ▶ The space of lattices can be seen as the modular surface $SL(2,\mathbb{Z}) \setminus \mathbb{H}$.

- \blacktriangleright The universal cover of a flat torus is $\mathbb C$
- \blacktriangleright The torus appears as the quotient \mathbb{C}/Λ
- Where Λ is a lattice in \mathbb{C}
- One can reconstruct the torus by gluing the boundary of a fundamental domain
- ► For example a parallelogram
- ▶ The space of lattices can be seen as the modular surface $SL(2,\mathbb{Z}) \setminus \mathbb{H}$.

- \blacktriangleright The universal cover of a flat torus is $\mathbb C$
- \blacktriangleright The torus appears as the quotient \mathbb{C}/Λ
- Where Λ is a lattice in \mathbb{C}
- One can reconstruct the torus by gluing the boundary of a fundamental domain
- ► For example a parallelogram
- ▶ The space of lattices can be seen as the modular surface $SL(2,\mathbb{Z}) \setminus \mathbb{H}$.

)

also see https://p3d.in/MGPfJ

- ► Easy: constant curvature sphere isometrically embedded in ℝ³
- Can we do the same with a flat torus?
- Not if the embedding is C^2
- Every complete surface of curvature 0 in \mathbb{R}^3 is a cylinder
- We need a weaker form of embedding

- ► Easy: constant curvature sphere isometrically embedded in ℝ³
- Can we do the same with a flat torus?
- ▶ Not if the embedding is C^2
- Every complete surface of curvature 0 in \mathbb{R}^3 is a cylinder
- We need a weaker form of embedding

- ► Easy: constant curvature sphere isometrically embedded in ℝ³
- Can we do the same with a flat torus?
- Not if the embedding is C^2
- Every complete surface of curvature 0 in \mathbb{R}^3 is a cylinder
- We need a weaker form of embedding

- Easy: constant curvature sphere isometrically embedded in R³
- Can we do the same with a flat torus?
- Not if the embedding is C^2
- Every complete surface of curvature 0 in \mathbb{R}^3 is a cylinder
- We need a weaker form of embedding

- ► Easy: constant curvature sphere isometrically embedded in ℝ³
- Can we do the same with a flat torus?
- Not if the embedding is C^2
- Every complete surface of curvature 0 in \mathbb{R}^3 is a cylinder
- We need a weaker form of embedding
Another form of the question

- Is there a piecewise-linear isometric embedding of a flat torus?
- ... an origami embedding
- ... in which every vertex has cone angle 2π?
- This is in fact possible.
- Various answers:
 - Burago and Zalgaller's general construction (1996)
 - Zalgaller's "long tori" as bendings of long cylinders (2000)
 - Quintanar's finite corrugations of the square flat torus (2019)
 - Diplotori, an elementary construction (...-2021)

The hyperboloid of one sheet is a ruled surface

joining two parallel circles with a common vertical axis

- The union of two such hyperboloids is a (topological) torus
- ▶ We will consider linear approximations of such hyperboloids

- The hyperboloid of one sheet is a ruled surface
 joining two parallel circles with a common vertical axis
- The union of two such hyperboloids is a (topological) torus
- ▶ We will consider linear approximations of such hyperboloids

- ► The hyperboloid of one sheet is a ruled surface
- joining two parallel circles with a common vertical axis

The union of two such hyperboloids is a (topological) torusWe will consider linear approximations of such hyperboloids

- The hyperboloid of one sheet is a ruled surface
- joining two parallel circles with a common vertical axis

- ▶ The union of two such hyperboloids is a (topological) torus
- ▶ We will consider linear approximations of such hyperboloids

- ► The hyperboloid of one sheet is a ruled surface
- joining two parallel circles with a common vertical axis

- The union of two such hyperboloids is a (topological) torus
- ► We will consider linear approximations of such hyperboloids

Consider a regular polygon with n vertices P₀,..., P_{n-1} centered at 0 in the plane z = 0

- and a regular polygon of the same size, with vertices Q₀,..., Q_{n-1} turned by an angle α, centered on the vertical axis in the plane z = h
- We join the points P_i, P_{i+1}, Q_i by a bottom triangle face B_i
- And the points Q_i, Q_{i+1}, P_{i+1} by a top triangle face T_i
- ▶ The union of all these faces is a piecewise-linear hyperboloid
- ▶ In short, a PL-oid, or ploid.

- Consider a regular polygon with n vertices P₀,..., P_{n-1} centered at 0 in the plane z = 0
- And a regular polygon of the same size, with vertices Q₀,..., Q_{n-1} turned by an angle α, centered on the vertical axis in the plane z = h
- We join the points P_i, P_{i+1}, Q_i by a bottom triangle face B_i
- And the points Q_i, Q_{i+1}, P_{i+1} by a top triangle face T_i
- ▶ The union of all these faces is a piecewise-linear hyperboloid
- ▶ In short, a PL-oid, or ploid.

- Consider a regular polygon with n vertices P₀,..., P_{n-1} centered at 0 in the plane z = 0
- and a regular polygon of the same size, with vertices Q₀,..., Q_{n-1} turned by an angle α, centered on the vertical axis in the plane z = h
- We join the points P_i, P_{i+1}, Q_i by a bottom triangle face B_i
- And the points Q_i, Q_{i+1}, P_{i+1} by a top triangle face T_i
- ▶ The union of all these faces is a piecewise-linear hyperboloid
- ▶ In short, a PL-oid, or ploid.

- Consider a regular polygon with n vertices P₀,..., P_{n-1} centered at 0 in the plane z = 0
- and a regular polygon of the same size, with vertices Q₀,..., Q_{n-1} turned by an angle α, centered on the vertical axis in the plane z = h
- We join the points P_i, P_{i+1}, Q_i by a bottom triangle face B_i
- And the points Q_i, Q_{i+1}, P_{i+1} by a top triangle face T_i
- ▶ The union of all these faces is a piecewise-linear hyperboloid
- ▶ In short, a PL-oid, or ploid.

- Consider a regular polygon with n vertices P₀,..., P_{n-1} centered at 0 in the plane z = 0
- and a regular polygon of the same size, with vertices Q₀,..., Q_{n-1} turned by an angle α, centered on the vertical axis in the plane z = h
- We join the points P_i, P_{i+1}, Q_i by a bottom triangle face B_i
- And the points Q_i, Q_{i+1}, P_{i+1} by a top triangle face T_i
- The union of all these faces is a piecewise-linear hyperboloid
- ► In short, a PL-oid, or ploid.

- Consider a regular polygon with n vertices P₀,..., P_{n-1} centered at 0 in the plane z = 0
- and a regular polygon of the same size, with vertices Q₀,..., Q_{n-1} turned by an angle α, centered on the vertical axis in the plane z = h
- We join the points P_i, P_{i+1}, Q_i by a bottom triangle face B_i
- And the points Q_i, Q_{i+1}, P_{i+1} by a top triangle face T_i
- The union of all these faces is a piecewise-linear hyperboloid
- ▶ In short, a PL-oid, or ploid.

PL-oids (2)

Here is what a ploid looks like

Its layout it formed of isometric triangles

It is a flat origami

Here is what a ploid looks like

Its layout it formed of isometric triangles

► It is a flat origami

PL-oids (2)

Here is what a ploid looks like

Its layout it formed of isometric triangles

▶ It is a flat origami

PL-oids (2)

Here is what a ploid looks like

Its layout it formed of isometric triangles

It is a flat origami

Here is what a ploid looks like

Its layout it formed of isometric triangles

It is a flat origami

Here is what a ploid looks like

Its layout it formed of isometric triangles

► It is a flat origami

Take two ploids with same supporting polygons,

- disjoint except for these polygons.
- ▶ Their union is a torus, which is flat.
- ▶ We say that this torus is diploid.

- Take two ploids with same supporting polygons,
- disjoint except for these polygons.
- Their union is a torus, which is flat.
- ▶ We say that this torus is diploid.

- Take two ploids with same supporting polygons,
- disjoint except for these polygons.
- ► Their union is a torus, which is flat.
- We say that this torus is diploid.

- Take two ploids with same supporting polygons,
- disjoint except for these polygons.
- ► Their union is a torus, which is flat.
- ► We say that this torus is diploid.

Diplotorus

Call *diplotorus* a diploid PL isometric embedding of a flat torus

One can easily compute layouts for a diplotorus

Diplotorus

Call diplotorus a diploid PL isometric embedding of a flat torus

One can easily compute layouts for a diplotorus

One can easily find the modulus of a diplotorus

A bit of computation shows that every flat torus can be realized, giving the result:

Theorem Every flat torus is a diplotorus

One can easily find the modulus of a diplotorus

A bit of computation shows that every flat torus can be realized, giving the result:

Theorem Every flat torus is a diplotorus

- One can easily find the modulus of a diplotorus
- A bit of computation shows that every flat torus can be realized, giving the result:
- Theorem

Every flat torus is a diplotorus

One can easily find the modulus of a diplotorus

A bit of computation shows that every flat torus can be realized, giving the result:

Theorem Every flat torus is a diplotorus

Proof sketch, step 1: Compute a modulus representative out of the diplotori layouts

- n: vertices of each regular polygon
- h: height of the torus
- a: twist parameter of the "inside" ploid
- a*: twist parameter of the "outside" ploid

 $d = (a - a^*)/2, \ b = (a + a^*)/2$

 $\begin{array}{lll} m(n,d,a,h) &=& m_1(n,d,a) \cdot 1 + m_i(n,d,a,h) \cdot i & \text{where} \\ m_1(n,d,a) &=& d/n - \cos(b\pi/n)\sin(d\pi/n)/(n\sin(\pi/n)) \\ m_i(n,d,a,h) &=& (\sqrt{h^2 + (2\sin((a+1)/2\pi/n)\sin((a-1)/2\pi/n))^2} \\ &+ \sqrt{h^2 + (2\sin((a*+1)/2\pi/n)\sin((a*-1)/2\pi/n))^2} \\ &)/(2n\sin(\pi/n)) \end{array}$

Proof sketch, step 2: Look at moduli of convex diplotori

A diplotorus is *convex* iff its "outside" ploid is convex.

A ploid is *convex* iff it's included in the boundary of its convex hull. (This happens when the twist parameter of the ploid is between 0 and 1.)

Proof sketch, step 2: Look at moduli of convex diplotori

A diplotorus is *convex* iff its "outside" ploid is convex.

A ploid is *convex* iff it's included in the boundary of its convex hull. (This happens when the twist parameter of the ploid is between 0 and 1.)

Proof sketch, step 3: Catch the square flat torus (and the torus of the regular hexagon) using non-convex diplotori

Diplotori patches in the hyperbolic plane

Florent Tallerie: fill in the "hole" with Zalgaller's "long tori"

• One can use the symmetry of the construction

▶ to build rectangle tori — in particular the square torus

- One can use the symmetry of the construction
- ▶ to build rectangle tori in particular the square torus

- One can use the symmetry of the construction
- ▶ to build rectangle tori in particular the square torus

- One can use the symmetry of the construction
- ▶ to build rectangle tori in particular the square torus

- One can use the symmetry of the construction
- ▶ to build rectangle tori in particular the square torus

Glue diplotori along square faces: build half-translation surfaces

- …and even translation surfaces.
- Question: describe the translation surfaces obtained.
- All our examples have cone angles 4π .

- Glue diplotori along square faces: build half-translation surfaces
- …and even translation surfaces.
- Question: describe the translation surfaces obtained.
- All our examples have cone angles 4π .

- Glue diplotori along square faces: build half-translation surfaces
- …and even translation surfaces.
- Question: describe the translation surfaces obtained.
- All our examples have cone angles 4π .

- Glue diplotori along square faces: build half-translation surfaces
- …and even translation surfaces.
- Question: describe the translation surfaces obtained.
- All our examples have cone angles 4π .

http://www.3dprintmath.com/figures/6-12

https://mathoverflow.net/questions/208996/ reference-for-a-pl-flat-torus-embedding-in-mathbbr3

https: //mathcurve.com/polyedres/toreplat/toreplat.shtml

- http://www.mathnet.ru/php/archive.phtml?wshow= paper&jrnid=znsl&paperid=549&option_lang=eng
- http://www.theses.fr/2019LYSE1354

https:

//im.icerm.brown.edu/portfolio/paper-flat-tori/

- http://www.3dprintmath.com/figures/6-12
- https://mathoverflow.net/questions/208996/ reference-for-a-pl-flat-torus-embedding-in-mathbbr3
- https: //mathcurve.com/polyedres/toreplat/toreplat.shtml
- http://www.mathnet.ru/php/archive.phtml?wshow= paper&jrnid=znsl&paperid=549&option_lang=eng
- http://www.theses.fr/2019LYSE1354

https:

//im.icerm.brown.edu/portfolio/paper-flat-tori/

- http://www.3dprintmath.com/figures/6-12
- https://mathoverflow.net/questions/208996/ reference-for-a-pl-flat-torus-embedding-in-mathbbr3

https:

//mathcurve.com/polyedres/toreplat/toreplat.shtml

- http://www.mathnet.ru/php/archive.phtml?wshow= paper&jrnid=znsl&paperid=549&option_lang=eng
- http://www.theses.fr/2019LYSE1354

https:

//im.icerm.brown.edu/portfolio/paper-flat-tori/

- http://www.3dprintmath.com/figures/6-12
- https://mathoverflow.net/questions/208996/ reference-for-a-pl-flat-torus-embedding-in-mathbbr3
- https: //mathcurve.com/polyedres/toreplat/toreplat.shtml
- http://www.mathnet.ru/php/archive.phtml?wshow= paper&jrnid=znsl&paperid=549&option_lang=eng
- http://www.theses.fr/2019LYSE1354

https:

//im.icerm.brown.edu/portfolio/paper-flat-tori/

- http://www.3dprintmath.com/figures/6-12
- https://mathoverflow.net/questions/208996/ reference-for-a-pl-flat-torus-embedding-in-mathbbr3
- https: //mathcurve.com/polyedres/toreplat/toreplat.shtml
- http://www.mathnet.ru/php/archive.phtml?wshow= paper&jrnid=znsl&paperid=549&option_lang=eng
- http://www.theses.fr/2019LYSE1354

https:

//im.icerm.brown.edu/portfolio/paper-flat-tori/

- http://www.3dprintmath.com/figures/6-12
- https://mathoverflow.net/questions/208996/ reference-for-a-pl-flat-torus-embedding-in-mathbbr3
- https: //mathcurve.com/polyedres/toreplat/toreplat.shtml
- http://www.mathnet.ru/php/archive.phtml?wshow= paper&jrnid=znsl&paperid=549&option_lang=eng
- http://www.theses.fr/2019LYSE1354

https:

//im.icerm.brown.edu/portfolio/paper-flat-tori/

- http://www.3dprintmath.com/figures/6-12
- https://mathoverflow.net/questions/208996/ reference-for-a-pl-flat-torus-embedding-in-mathbbr3
- https: //mathcurve.com/polyedres/toreplat/toreplat.shtml
- http://www.mathnet.ru/php/archive.phtml?wshow= paper&jrnid=znsl&paperid=549&option_lang=eng
- http://www.theses.fr/2019LYSE1354

https:

//im.icerm.brown.edu/portfolio/paper-flat-tori/