Seeking flat tori - a diploid approach

Alba Málaga - with Samuel Lelièvre and Pierre Arnoux

July, 2022

Thanks

Thanks to IMPA, ICERM and CIRM for their help in the realisation of this work.

We thank our universities and the French university system for our permanent jobs.

Surfaces of constant curvature

- Any conformal compact surface can be endowed with a Riemannian metric of constant curvature.
\rightarrow For a sphere, this metric is unique and has strictly positive curvature
- Is is easy to give an isometric model in \mathbb{R}^{3}
- For a surface of genus larger than 1, this metric has strictly negative curvature
- For a torus, this metric has curvature 0

Surfaces of constant curvature

- Any conformal compact surface can be endowed with a Riemannian metric of constant curvature.
- For a sphere, this metric is unique and has strictly positive curvature
\Rightarrow Is is easy to give an isometric model in \mathbb{R}^{3}
- For a surface of genus larger than 1, this metric has strictly negative curvature
- For a torus, this metric has curvature 0

Surfaces of constant curvature

- Any conformal compact surface can be endowed with a Riemannian metric of constant curvature.
- For a sphere, this metric is unique and has strictly positive curvature
- Is is easy to give an isometric model in \mathbb{R}^{3}
- For a surface of genus larger than 1, this metric has strictly negative curvature
- For a torus, this metric has curvature 0

Surfaces of constant curvature

- Any conformal compact surface can be endowed with a Riemannian metric of constant curvature.
- For a sphere, this metric is unique and has strictly positive curvature
- Is is easy to give an isometric model in \mathbb{R}^{3}
- For a surface of genus larger than 1, this metric has strictly negative curvature
- For a torus, this metric has curvature 0

Surfaces of constant curvature

- Any conformal compact surface can be endowed with a Riemannian metric of constant curvature.
- For a sphere, this metric is unique and has strictly positive curvature
- Is is easy to give an isometric model in \mathbb{R}^{3}
- For a surface of genus larger than 1, this metric has strictly negative curvature
- For a torus, this metric has curvature 0

Flat tori

- The universal cover of a flat torus is \mathbb{C}
- The torus appears as the quotient \mathbb{C} / \wedge
- Where Λ is a lattice in \mathbb{C}
- One can reconstruct the torus by gluing the boundary of a fundamental domain
- For example a parallelogram
- The space of lattices can be seen as the modular surface $\mathrm{SL}(2, \mathbb{Z}) \backslash \mathbb{H}$.

Flat tori

- The universal cover of a flat torus is \mathbb{C}
- The torus appears as the quotient \mathbb{C} / Λ
- Where \wedge is a lattice in \mathbb{C}
- One can reconstruct the torus by gluing the boundary of a fundamental domain
- For example a parallelogram
- The space of lattices can be seen as the modular surface $\mathrm{SL}(2, \mathbb{Z}) \backslash \mathbb{H}$.

Flat tori

- The universal cover of a flat torus is \mathbb{C}
- The torus appears as the quotient \mathbb{C} / Λ
- Where Λ is a lattice in \mathbb{C}
- One can reconstruct the torus by gluing the boundary of a fundamental domain
- For example a parallelogram
- The space of lattices can be seen as the modular surface $\mathrm{SL}(2, \mathbb{Z}) \backslash \mathbb{H}$.

Flat tori

- The universal cover of a flat torus is \mathbb{C}
- The torus appears as the quotient \mathbb{C} / Λ
- Where Λ is a lattice in \mathbb{C}
- One can reconstruct the torus by gluing the boundary of a fundamental domain
- For example a parallelogram
- The space of lattices can be seen as the modular surface $S L(2, \mathbb{Z}) \backslash \mathbb{H}$.

Flat tori

- The universal cover of a flat torus is \mathbb{C}
- The torus appears as the quotient \mathbb{C} / Λ
- Where Λ is a lattice in \mathbb{C}
- One can reconstruct the torus by gluing the boundary of a fundamental domain
- For example a parallelogram

The space of lattices can be seen as the modular surface $\mathrm{SL}(2, \mathbb{Z}) \backslash \mathbb{H}$.

Flat tori

- The universal cover of a flat torus is \mathbb{C}
- The torus appears as the quotient \mathbb{C} / Λ
- Where Λ is a lattice in \mathbb{C}
- One can reconstruct the torus by gluing the boundary of a fundamental domain
- For example a parallelogram
- The space of lattices can be seen as the modular surface $\mathrm{SL}(2, \mathbb{Z}) \backslash \mathbb{H}$.

$\mathrm{SL}(2, \mathbb{Z}) \backslash \mathbb{H}$ as a modular curve of tori

$\mathrm{SL}(2, \mathbb{Z}) \backslash \mathbb{H}$ as a modular curve of tori

$\mathrm{SL}(2, \mathbb{Z}) \backslash \mathbb{H}$ as a modular curve of tori

$\mathrm{SL}(2, \mathbb{Z}) \backslash \mathbb{H}$ as a modular curve of tori

$\mathrm{SL}(2, \mathbb{Z}) \backslash \mathbb{H}$ as a modular curve of tori

$\mathrm{SL}(2, \mathbb{Z}) \backslash \mathbb{H}$ as a modular curve of tori
0
$\mathrm{SL}(2, \mathbb{Z}) \backslash \mathbb{H}$ as a modular curve of tori

$\mathrm{SL}(2, \mathbb{Z}) \backslash \mathbb{H}$ as a modular curve of tori

$\mathrm{SL}(2, \mathbb{Z}) \backslash \mathbb{H}$ as a modular curve of tori

Fundamental domains for $\operatorname{SL}(2, \mathbb{Z})$ acting on \mathbb{H}

Fundamental domains for $\operatorname{SL}(2, \mathbb{Z})$ acting on \mathbb{H}

also see https://p3d.in/MGPfJ

Fundamental domains for $\operatorname{SL}(2, \mathbb{Z})$ acting on \mathbb{H}

The question

- Easy: constant curvature sphere isometrically embedded in \mathbb{R}^{3}
- Can we do the same with a flat torus?
- Not if the embedding is C^{2}
- Every complete surface of curvature 0 in \mathbb{R}^{3} is a cylinder
- We need a weaker form of embedding

The question

- Easy: constant curvature sphere isometrically embedded in \mathbb{R}^{3}
- Can we do the same with a flat torus?
- Not if the embedding is C^{2}
- Every complete surface of curvature 0 in \mathbb{R}^{3} is a cylinder
- We need a weaker form of embedding

The question

- Easy: constant curvature sphere isometrically embedded in \mathbb{R}^{3}
- Can we do the same with a flat torus?
- Not if the embedding is C^{2}
\rightarrow Every complete surface of curvature 0 in \mathbb{R}^{3} is a cylinder
- We need a weaker form of embedding

The question

- Easy: constant curvature sphere isometrically embedded in \mathbb{R}^{3}
- Can we do the same with a flat torus?
- Not if the embedding is C^{2}
- Every complete surface of curvature 0 in \mathbb{R}^{3} is a cylinder
- We need a weaker form of embedding

The question

- Easy: constant curvature sphere isometrically embedded in \mathbb{R}^{3}
- Can we do the same with a flat torus?
- Not if the embedding is C^{2}
- Every complete surface of curvature 0 in \mathbb{R}^{3} is a cylinder
- We need a weaker form of embedding

Another form of the question

- Is there a piecewise-linear isometric embedding of a flat torus?
- ... an origami embedding
- ... in which every vertex has cone angle 2π ?
- This is in fact possible.
- Various answers:
- Burago and Zalgaller's general construction (1996)
- Zalgaller's "long tori" as bendings of long cylinders (2000)
- Quintanar's finite corrugations of the square flat torus (2019)
- Diplotori, an elementary construction (...-2021)

F. Tallerie

Hyperboloids

- The hyperboloid of one sheet is a ruled surface
- joining two parallel circles with a common vertical axis
- The union of two such hyperboloids is a (topological) torus
- We will consider linear approximations of such hyperboloids

Hyperboloids

- The hyperboloid of one sheet is a ruled surface
- joining two parallel circles with a common vertical axis
- The union of two such hyperboloids is a (topological) torus
- We will consider linear approximations of such hyperboloids

Hyperboloids

- The hyperboloid of one sheet is a ruled surface
- joining two parallel circles with a common vertical axis

- The union of two such hyperboloids is a (topological) torus - We will consider linear approximations of such hyperboloids

Hyperboloids

- The hyperboloid of one sheet is a ruled surface
- joining two parallel circles with a common vertical axis

- The union of two such hyperboloids is a (topological) torus - We will consider linear approximations of such hyperboloids

Hyperboloids

- The hyperboloid of one sheet is a ruled surface
- joining two parallel circles with a common vertical axis

- The union of two such hyperboloids is a (topological) torus
- We will consider linear approximations of such hyperboloids

PL-oids

- Consider a regular polygon with n vertices P_{0}, \ldots, P_{n-1} centered at 0 in the plane $z=0$
- and a regular polygon of the same size, with vertices Q_{0}, \ldots, Q_{n-1} turned by an angle α, centered on the vertical axis in the plane $z=h$
\Rightarrow We join the points P_{i}, P_{i+1}, Q_{i} by a bottom triangle face B_{i}
- And the points Q_{i}, Q_{i+1}, P_{i+1} by a top triangle face T_{i}
- The union of all these faces is a piecewise-linear hyperboloid
- In short, a PL-oid, or ploid.

PL-oids

- Consider a regular polygon with n vertices P_{0}, \ldots, P_{n-1} centered at 0 in the plane $z=0$
- and a regular polygon of the same size, with vertices Q_{0}, \ldots, Q_{n-1} turned by an angle α, centered on the vertical axis in the plane $z=h$
\Rightarrow We join the points P_{i}, P_{i+1}, Q_{i} by a bottom triangle face B_{i}
- And the points Q_{i}, Q_{i+1}, P_{i+1} by a top triangle face T_{i}
- The union of all these faces is a piecewise-linear hyperboloid
- In short, a PL-oid, or ploid.

PL-oids

- Consider a regular polygon with n vertices P_{0}, \ldots, P_{n-1} centered at 0 in the plane $z=0$
- and a regular polygon of the same size, with vertices Q_{0}, \ldots, Q_{n-1} turned by an angle α, centered on the vertical axis in the plane $z=h$
- We join the points P_{i}, P_{i+1}, Q_{i} by a bottom triangle face B_{i}
\Rightarrow And the points Q_{i}, Q_{i+1}, P_{i+1} by a top triangle face T_{i}
- The union of all these faces is a piecewise-linear hyperboloid
- In short, a PL-oid, or ploid.

PL-oids

- Consider a regular polygon with n vertices P_{0}, \ldots, P_{n-1} centered at 0 in the plane $z=0$
- and a regular polygon of the same size, with vertices Q_{0}, \ldots, Q_{n-1} turned by an angle α, centered on the vertical axis in the plane $z=h$
- We join the points P_{i}, P_{i+1}, Q_{i} by a bottom triangle face B_{i}
- And the points Q_{i}, Q_{i+1}, P_{i+1} by a top triangle face T_{i}
- The union of all these faces is a piecewise-linear hyperboloid - In short, a PL-oid, or ploid.

PL-oids

- Consider a regular polygon with n vertices P_{0}, \ldots, P_{n-1} centered at 0 in the plane $z=0$
- and a regular polygon of the same size, with vertices Q_{0}, \ldots, Q_{n-1} turned by an angle α, centered on the vertical axis in the plane $z=h$
- We join the points P_{i}, P_{i+1}, Q_{i} by a bottom triangle face B_{i}
- And the points Q_{i}, Q_{i+1}, P_{i+1} by a top triangle face T_{i}
- The union of all these faces is a piecewise-linear hyperboloid

PL-oids

- Consider a regular polygon with n vertices P_{0}, \ldots, P_{n-1} centered at 0 in the plane $z=0$
- and a regular polygon of the same size, with vertices Q_{0}, \ldots, Q_{n-1} turned by an angle α, centered on the vertical axis in the plane $z=h$
- We join the points P_{i}, P_{i+1}, Q_{i} by a bottom triangle face B_{i}
- And the points Q_{i}, Q_{i+1}, P_{i+1} by a top triangle face T_{i}
- The union of all these faces is a piecewise-linear hyperboloid
- In short, a PL-oid, or ploid.

PL-oids (2)

- Here is what a ploid looks like
- Its layout it formed of isometric triangles
- It is a flat origami

PL-oids (2)

- Here is what a ploid looks like

- Its layout it formed of isometric triangles
- It is a flat origami

PL-oids (2)

- Here is what a ploid looks like

$>$ Its layout it formed of isometric triangles
- It is a flat origami

PL-oids (2)

- Here is what a ploid looks like

- Its layout it formed of isometric triangles
- It is a flat origami

PL-oids (2)

Here is what a ploid looks like

0

Its layout it formed of isometric triangles

- It is a flat origami

PL-oids (2)

- Here is what a ploid looks like

- Its layout it formed of isometric triangles

- It is a flat origami

Diploids

- Take two ploids with same supporting polygons,
- disjoint except for these polygons. - Their union is a torus, which is flat. - We say that this torus is diploid.

Diploids

- Take two ploids with same supporting polygons,
- disjoint except for these polygons.
- Their union is a torus, which is flat.
- We say that this torus is diploid.

Diploids

- Take two ploids with same supporting polygons,
- disjoint except for these polygons.
- Their union is a torus, which is flat.
- We say that this torus is diploid.

Diploids

- Take two ploids with same supporting polygons,
- disjoint except for these polygons.
- Their union is a torus, which is flat.
- We say that this torus is diploid.

Diplotorus

- Call diplotorus a diploid PL isometric embedding of a flat torus
- One can easily compute layouts for a diplotorus

Diplotorus

- Call diplotorus a diploid PL isometric embedding of a flat torus
- One can easily compute layouts for a diplotorus

Every torus is a diplotorus

- One can easily find the modulus of a diplotorus
- A bit of computation shows that every flat torus can be realized, giving the result:

Theorem
Every flat torus is a diplotorus

- It is quite difficult to realize the square torus in this way (need
a 14-gon)

Every torus is a diplotorus

- One can easily find the modulus of a diplotorus
- A bit of computation shows that every flat torus can be realized, giving the result:
Theorem
Every flat torus is a diplotorus
\rightarrow It is quite difficult to realize the square torus in this way (need
a 14 -gon)

Every torus is a diplotorus

- One can easily find the modulus of a diplotorus
- A bit of computation shows that every flat torus can be realized, giving the result:
Theorem
Every flat torus is a diplotorus
- It is quite difficult to realize the square torus in this way (need a 14-gon)

Every torus is a diplotorus

- One can easily find the modulus of a diplotorus
- A bit of computation shows that every flat torus can be realized, giving the result:
Theorem
Every flat torus is a diplotorus
- It is quite difficult to realize the square torus in this way (need a 14-gon)

Proof sketch, step 1: Compute a modulus representative out of the diplotori layouts
n : vertices of each regular polygon
h : height of the torus
a: twist parameter of the "inside" ploid
a^{*} : twist parameter of the "outside" ploid
$d=\left(a-a^{*}\right) / 2, b=\left(a+a^{*}\right) / 2$

$$
\begin{aligned}
m(n, d, a, h)= & m_{1}(n, d, a) \cdot 1+m_{i}(n, d, a, h) \cdot i \text { where } \\
m_{1}(n, d, a)= & d / n-\cos (b \pi / n) \sin (d \pi / n) /(n \sin (\pi / n)) \\
m_{i}(n, d, a, h)= & \left(\sqrt{h^{2}+(2 \sin ((a+1) / 2 \pi / n) \sin ((a-1) / 2 \pi / n))^{2}}\right. \\
& +\sqrt{h^{2}+(2 \sin ((a *+1) / 2 \pi / n) \sin ((a *-1) / 2 \pi / n))^{2}} \\
&) /(2 n \sin (\pi / n))
\end{aligned}
$$

Proof sketch, step 2: Look at moduli of convex diplotori A diplotorus is convex iff its "outside" ploid is convex.
A ploid is convex iff it's included in the boundary of its convex hull. (This happens when the twist parameter of the ploid is between 0 and 1.)

Proof sketch, step 2: Look at moduli of convex diplotori A diplotorus is convex iff its "outside" ploid is convex.
A ploid is convex iff it's included in the boundary of its convex hull. (This happens when the twist parameter of the ploid is between 0 and 1.)

Proof sketch, step 3: Catch the square flat torus (and the torus of the regular hexagon) using non-convex diplotori

Diplotori patches in the hyperbolic plane

Florent Tallerie: fill in the "hole" with Zalgaller's "long tori"

Symmetrization of diplotorus

- One can use the symmetry of the construction - to build rectangle tori - in particular the square torus

Symmetrization of diplotorus

- One can use the symmetry of the construction
- to build rectangle tori - in particular the square torus

Symmetrization of diplotorus

- One can use the symmetry of the construction
- to build rectangle tori - in particular the square torus

Symmetrization of diplotorus

- One can use the symmetry of the construction
- to build rectangle tori - in particular the square torus

Symmetrization of diplotorus

- One can use the symmetry of the construction
- to build rectangle tori - in particular the square torus

Translation surfaces

- Glue diplotori along square faces: build half-translation surfaces
- ...and even translation surfaces.
- Question: describe the translation surfaces obtained.
- All our examples have cone angles 4π.
https://p3d.in/u/albamath/w6J1r

Translation surfaces

- Glue diplotori along square faces: build half-translation surfaces
- ...and even translation surfaces.
- Question: describe the translation surfaces obtained.
- All our examples have cone angles 4π.
https://p3d.in/u/albamath/w6J1r

Translation surfaces

- Glue diplotori along square faces: build half-translation surfaces
- ...and even translation surfaces.
- Question: describe the translation surfaces obtained.
- All our examples have cone angles 4π.
https://p3d.in/u/albamath/w6J1r

Translation surfaces

- Glue diplotori along square faces: build half-translation surfaces
- ...and even translation surfaces.
- Question: describe the translation surfaces obtained.
- All our examples have cone angles 4π.
https://p3d.in/u/albamath/w6J1r

Links

- http://www.3dprintmath.com/figures/6-12
- https://mathoverflow.net/questions/208996/ reference-for-a-pl-flat-torus-embedding-in-mathbbr3
- https:
//mathcurve.com/polyedres/toreplat/toreplat.shtml
- http://www.mathnet.ru/php/archive.phtml?wshow= paper\&jrnid=znsl\&paperid=549\&option_lang=eng
- http://www.theses.fr/2019LYSE1354
- https:
//im.ice:m. brown edu/portfolio/paper-flat-tori/
> https://p3d.in/u/albamath

Links

- http://www.3dprintmath.com/figures/6-12
- https://mathoverflow.net/questions/208996/ reference-for-a-pl-flat-torus-embedding-in-mathbbr3
- https:
//mathcurve.com/polyedres/toreplat/toreplat.shtml
- http://www mathnet. ru/php/archive phtml?wshow= paper\&jrnid=znsl\&paperid=549\&option_lang=eng
- http://www.theses.fr/2019LYSE1354
- https:
//im.icerm.brown.edu/portfolio/paper-flat-tori/
- https://p3d.in/u/albamath

Links

- http://www.3dprintmath.com/figures/6-12
- https://mathoverflow.net/questions/208996/ reference-for-a-pl-flat-torus-embedding-in-mathbbr3
- https:
//mathcurve.com/polyedres/toreplat/toreplat.shtml
- http://www.mathnet.ru/php/archive.phtml?wshow= paper\&jrnid=znsl\&paperid=549\&option_lang=eng
- http://www.theses.fr/2019LYSE1354
- https:
//im.icerm.brown.edu/portfolio/paper-flat-tori/
- https://p3d.in/u/albamath

Links

- http://www.3dprintmath.com/figures/6-12
- https://mathoverflow.net/questions/208996/ reference-for-a-pl-flat-torus-embedding-in-mathbbr3
- https:
//mathcurve.com/polyedres/toreplat/toreplat.shtml
- http://www.mathnet.ru/php/archive.phtml?wshow= paper\&jrnid=znsl\&paperid=549\&option_lang=eng
- http://www.theses.fr/2019LYSE1354
- https: //im.icerm.brown.edu/portfolio/paper-flat-tori/
> https://p3d.in/u/albamath

Links

- http://www.3dprintmath.com/figures/6-12
- https://mathoverflow.net/questions/208996/ reference-for-a-pl-flat-torus-embedding-in-mathbbr3
- https:
//mathcurve.com/polyedres/toreplat/toreplat.shtml
- http://www.mathnet.ru/php/archive.phtml?wshow= paper\&jrnid=znsl\&paperid=549\&option_lang=eng
- http://www.theses.fr/2019LYSE1354
- https: //im.icerm.brown.edu/portfolio/paper-flat-tori/
- https://p3d.in/u/albamath

Links

- http://www.3dprintmath.com/figures/6-12
- https://mathoverflow.net/questions/208996/ reference-for-a-pl-flat-torus-embedding-in-mathbbr3
- https:
//mathcurve.com/polyedres/toreplat/toreplat.shtml
- http://www.mathnet.ru/php/archive.phtml?wshow= paper\&jrnid=znsl\&paperid=549\&option_lang=eng
- http://www.theses.fr/2019LYSE1354
- https:
//im.icerm.brown.edu/portfolio/paper-flat-tori/
> https://p3d.in/u/albamath

Links

- http://www.3dprintmath.com/figures/6-12
- https://mathoverflow.net/questions/208996/ reference-for-a-pl-flat-torus-embedding-in-mathbbr3
- https:
//mathcurve.com/polyedres/toreplat/toreplat.shtml
- http://www.mathnet.ru/php/archive.phtml?wshow= paper\&jrnid=znsl\&paperid=549\&option_lang=eng
- http://www.theses.fr/2019LYSE1354
- https:
//im.icerm.brown.edu/portfolio/paper-flat-tori/
- https://p3d.in/u/albamath

