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This is planarity testing, solvable in linear time [Hopcroft, Tarjan, 1974]. )
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Input: A graph G and an integer g
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Embedding graphs on surfaces

Input: A graph G and an integer g
Question: Does G have a topological embedding in the orientable
(or non-orientable) Surface Of genus g?

NP-complete [Thomassen, 1989] )

Existing algorithms
@ [Mohar, 1999]: f(g) - n
@ [Kawarabayashi, Mohar, Reed, 2008]: 2po|y(g) n

@ Graph minor theory: f(g) -’ [Robertson and Seymour, 1995]+[Adler
et al., 2008].

Motivation

Many problems can be solved faster for graphs embeddable on a
fixed surface than for general graphs (shortest paths, (multi)flows and

(multi)cuts, disjoint paths, (sub)graph isomorphism, TSP, Steiner trees, etc.)
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Embedding graphs in topological spaces

Input: e A graph G,
o a topelogical-space—2-dim simplicial complex C.

Question: Does G have a topological embedding on C?

@ model topological spaces as simplicial complexes;

@ actually as 2-dimensional simplicial complexes, or 2-complexes:
graphs on which we attach a triangle to some of its cycles of
length 3.
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Embedding graphs in topological spaces

Input: e A graph G,
o a topelogical-space—2-dim simplicial complex C.

Question: Does G have a topological embedding on C?

@ model topological spaces as simplicial complexes;

@ actually as 2-dimensional simplicial complexes, or 2-complexes:
graphs on which we attach a triangle to some of its cycles of
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Our result

NP-hardness
@ Any surface of genus g is (homeomorphic to)
a 2-complex with O(g) simplices;
o deciding embeddability of a graph on a
surface is NP-hard [Thomassen, 1989];

@ thus, our problem is NP-hard.
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Algorithm [Cdv, Magnard, 2021]
Given: e a graph G with n vertices and edges

@ a 2-complex C with ¢ simplices

one can decide whether G has an embedding into C in time
f(c)-n?.




Our result

NP-hardness

@ Any surface of genus g is (homeomorphic to)
a 2-complex with O(g) simplices;

o deciding embeddability of a graph on a
surface is NP-hard [Thomassen, 1989];

@ thus, our problem is NP-hard.

Algorithm [Cdv, Magnard, 2021]
Given: e a graph G with n vertices and edges

@ a 2-complex C with ¢ simplices

one can decide whether G has an embedding into C in time
f(c)-n?.

Remarks

@ independent from previous works to embed graphs on surfaces;

o previous result in £(c) - n9(€) [cdv, Magnard, Mohar, 2015].




Special case: The crossing number problem

Problem

Input: a graph G and an integer k.

Problem: decide whether G can be drawn in the plane with at most
k crossings.

Results
@ NP-hard [Garey, 1983],
@ linear-time for fixed k [Kawarabayashi and Reed, 2007],

@ our result directly implies a quadratic-time algorithm for a
more general problem.
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Why 2-complexes are/look harder to handle than surfaces

The graphs embeddable on a given 2-complex is not minor-closed. J
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Why 2-complexes are/look harder to handle than surfaces

The graphs embeddable on a given 2-complex is not minor-closed. J

Some problems are harder on 2-complexes than on surfaces:

[ problem

[ surfaces

[

2-complexes

l

homeomorphism

linear-time

same as graph

isomor-

phism [O Danlaing et al.,

2000]

deciding contractibility of
curves

linear-time [Dey and
Guha, 1999]

undecidable
1959]

[Boone,




Why 2-complexes are still manageable
Every graph is embeddable in a 3-book. So wlog C contains no
3-book.

J




Why 2-complexes are still manageable

Every graph is embeddable in a 3-book. So wlog C contains no
3-book.




Why 2-complexes are still manageable

Every graph is embeddable in a 3-book. So wlog C contains no
3-book.




Why 2-complexes are still manageable

Every graph is embeddable in a 3-book. So wlog C contains no
3-book. J




Why 2-complexes are still manageable

Every graph is embeddable in a 3-book. So wlog C contains no
3-book. J




Why 2-complexes are still manageable

Every graph is embeddable in a 3-book. So wlog C contains no
3-book. J

Let C be a 2-complex without 3-book. Every graph embeddable
on C is embeddable on a surface of genus O(c¢). J




Sketch of the algorithm



Branch decomposition of G

@ Branch decomposition B: unrooted binary tree with leaves in
bijection with the edges of G;

@ each edge of & induces a bipartition of the edges of G.

Credits: wikipedia eh hi
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Branch decomposition of G

@ Branch decomposition B: unrooted binary tree with leaves in
bijection with the edges of G;

@ each edge of & induces a bipartition of the edges of G.

@ B has < k if the middle set, the set of vertices appearing
on both sides of an induced bipartition, is always < k.

Standard strategy

© Reduce to the case where G has a branch decomposition of
width w = poly(c);

@ use dynamic programming on a branch decomposition of G.




Irrelevant vertex method

Inspired from [Kociumaka and Ma. Pilipczuk, 2019]

If G has no branch decomposition of small width, then it has (a
subdivision Of) a Iarge grid [Robertson and Seymour, 1995].
In O(n) time, find a planar subgraph of G

@ containing a subdivision of a large grid

@ connected to the rest of the graph only via its outside cycle.
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Bottom-up dynamic programming

Intuition
Choose a root of the branch decomposition 5 and apply bottom-up
dynamic programming.
For every induced bipartition (Ei, E;), memoize
@ all the possible shapes of “regions” of C that can be occupied
by E2
@ and, for each such shape, the location of the vertices of the
middle set of (E1, E;) (the “boundary” of the region).

Credits: wikipedia



Bottom-up dynamic programming

Intuition
Choose a root of the branch decomposition 5 and apply bottom-up
dynamic programming.
For every induced bipartition (Ei, E;), memoize
@ all the possible shapes of “regions” of C that can be occupied
by E2
@ and, for each such shape, the location of the vertices of the
middle set of (E1, E;) (the “boundary” of the region).

Problems

@ represent such regions,

@ prove that there are not too many such possibilities.




Representing regions: Partitioning graphs

Assume G is embedded on C. To every induced bipartition (E1, E>),
we define a partitioning graph P(Ej, E;) separating E; and E;. ‘
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@ Regions are labelled 0 (no part of the graph), 1 (£1), 2 (E);

@ vertices are labelled essentially by vertices of the middle set.
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Representing regions: Partitioning graphs

Assume G is embedded on C. To every induced bipartition (E1, E>),
we define a partitioning graph P(Ej, E;) separating E; and E;. J




Number of possibilities in the dynamic program

Main Lemma

If G embeds on C, then it has an embedding in which every
partitioning graph (w.r.t. 5) has O(c + w) vertices, edges, and
faces.

Sketch of proof

@ By moving around monogons and bigons: P(E;, E;) does not
have too many monogons or bigons.
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Number of possibilities in the dynamic program

Main Lemma |

If G embeds on C, then it has an embedding in which every
partitioning graph (w.r.t. 5) has O(c + w) vertices, edges, and
faces.

Sketch of proof |

@ By moving around monogons and bigons: P(E;, E;) does not
have too many monogons or bigons.

@ Need to check that such operations are compatible for all
induced bipartitions (E;, Ep).

Fact |

Up to homeomorphism, there are (c + w)9(c+*) embeddings of
graphs with O(c + w) vertices, edges, and faces into C.

+ many other details (data structures for graphs on 2-complexes;
definition of partitioning graph; assuming cellular embeddings. .. ).
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