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This is planarity testing, solvable in linear time [Hopcroft, Tarjan, 1974].
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Embedding graphs on surfaces

Input: A graph G and an integer g
Question: Does G have a topological embedding in the orientable
(or non-orientable) surface of genus g?

NP-complete [Thomassen, 1989]

Existing algorithms

[Mohar, 1999]: f (g) · n
[Kawarabayashi, Mohar, Reed, 2008]: 2poly(g) · n
Graph minor theory: f (g) · n3 [Robertson and Seymour, 1995]+[Adler

et al., 2008].

Motivation

Many problems can be solved faster for graphs embeddable on a
�xed surface than for general graphs (shortest paths, (multi)�ows and

(multi)cuts, disjoint paths, (sub)graph isomorphism, TSP, Steiner trees, etc.)
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a topological space T .
Question: Does G have a topological embedding on T?

model topological spaces as simplicial complexes;

actually as 2-dimensional simplicial complexes, or 2-complexes:
graphs on which we attach a triangle to some of its cycles of
length 3.
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Our result

NP-hardness

Any surface of genus g is (homeomorphic to)
a 2-complex with O(g) simplices;

deciding embeddability of a graph on a
surface is NP-hard [Thomassen, 1989];

thus, our problem is NP-hard.

Algorithm [CdV, Magnard, 2021]

Given: a graph G with n vertices and edges

a 2-complex C with c simplices
one can decide whether G has an embedding into C in time
f (c) · n2.

Remarks

independent from previous works to embed graphs on surfaces;

previous result in f (c) · nO(c) [CdV, Magnard, Mohar, 2018].



Special case: The crossing number problem

Problem

Input: a graph G and an integer k .
Problem: decide whether G can be drawn in the plane with at most
k crossings.

Results

NP-hard [Garey, 1983],

linear-time for �xed k [Kawarabayashi and Reed, 2007],

our result directly implies a quadratic-time algorithm for a
more general problem.
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Why 2-complexes are/look harder to handle than surfaces

The graphs embeddable on a given 2-complex is not minor-closed.

Some problems are harder on 2-complexes than on surfaces:

problem surfaces 2-complexes

homeomorphism linear-time same as graph isomor-
phism [Ó Dúnlaing et al.,
2000]

deciding contractibility of
curves

linear-time [Dey and
Guha, 1999]

undecidable [Boone,
1959]
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Every graph is embeddable in a 3-book. So wlog C contains no
3-book.
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Why 2-complexes are still manageable

Every graph is embeddable in a 3-book. So wlog C contains no
3-book.

Let C be a 2-complex without 3-book. Every graph embeddable
on C is embeddable on a surface of genus O(c).



Sketch of the algorithm



Overview

Branch decomposition of G

Branch decomposition B : unrooted binary tree with leaves in
bijection with the edges of G ;

each edge of B induces a bipartition of the edges of G .

B has width ≤ k if the middle set, the set of vertices appearing
on both sides of an induced bipartition, is always ≤ k .

Credits: wikipedia
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Overview

Branch decomposition of G

Branch decomposition B : unrooted binary tree with leaves in
bijection with the edges of G ;

each edge of B induces a bipartition of the edges of G .

B has width ≤ k if the middle set, the set of vertices appearing
on both sides of an induced bipartition, is always ≤ k .

Standard strategy
1 Reduce to the case where G has a branch decomposition of

width w = poly(c);
2 use dynamic programming on a branch decomposition of G .



Irrelevant vertex method

Inspired from [Kociumaka and Ma. Pilipczuk, 2019]

If G has no branch decomposition of small width, then it has (a
subdivision of) a large grid [Robertson and Seymour, 1995].
In O(n) time, �nd a planar subgraph of G

containing a subdivision of a large grid

connected to the rest of the graph only via its outside cycle.

The central vertex is irrelevant.
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Bottom-up dynamic programming

Intuition

Choose a root of the branch decomposition B and apply bottom-up
dynamic programming.
For every induced bipartition (E1,E2), memoize

all the possible shapes of �regions� of C that can be occupied
by E2

and, for each such shape, the location of the vertices of the
middle set of (E1,E2) (the �boundary� of the region).

Credits: wikipedia
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Bottom-up dynamic programming

Intuition

Choose a root of the branch decomposition B and apply bottom-up
dynamic programming.
For every induced bipartition (E1,E2), memoize

all the possible shapes of �regions� of C that can be occupied
by E2

and, for each such shape, the location of the vertices of the
middle set of (E1,E2) (the �boundary� of the region).

Problems
1 represent such regions,
2 prove that there are not too many such possibilities.



Representing regions: Partitioning graphs

Assume G is embedded on C . To every induced bipartition (E1,E2),
we de�ne a partitioning graph P(E1,E2) separating E1 and E2.

Regions are labelled 0 (no part of the graph), 1 (E1), 2 (E2);

vertices are labelled essentially by vertices of the middle set.
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Representing regions: Partitioning graphs

Assume G is embedded on C . To every induced bipartition (E1,E2),
we de�ne a partitioning graph P(E1,E2) separating E1 and E2.



Number of possibilities in the dynamic program

Main Lemma

If G embeds on C , then it has an embedding in which every
partitioning graph (w.r.t. B) has O(c + w) vertices, edges, and
faces.

Sketch of proof

By moving around monogons and bigons: P(E1,E2) does not
have too many monogons or bigons.
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Number of possibilities in the dynamic program

Main Lemma

If G embeds on C , then it has an embedding in which every
partitioning graph (w.r.t. B) has O(c + w) vertices, edges, and
faces.

Sketch of proof

By moving around monogons and bigons: P(E1,E2) does not
have too many monogons or bigons.

Need to check that such operations are compatible for all
induced bipartitions (E1,E2).

Fact

Up to homeomorphism, there are (c + w)O(c+w) embeddings of
graphs with O(c + w) vertices, edges, and faces into C .

+ many other details (data structures for graphs on 2-complexes;
de�nition of partitioning graph; assuming cellular embeddings. . . ).



Thank you for your attention!

Questions?
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