# Embedding Graphs into 2-Dimensional Simplicial Complexes 

Éric Colin de Verdière

CNRS, LIGM, Marne-la-Vallée, France

Joint work with Thomas Magnard


## Embedding graphs in the plane

Input: A graph G
Question: Does $G$ have a topological embedding in the plane?


## Embedding graphs in the plane

Input: A graph G
Question: Does $G$ have a topological embedding in the plane?


This is planarity testing, solvable in linear time [Hopcroft, Tarjan, 1974].

## Embedding graphs on surfaces

Input: A graph $G$ and an integer $g$
Question: Does $G$ have a topological embedding in the orientable (or non-orientable) surface of genus $g$ ?


## Embedding graphs on surfaces

Input: A graph $G$ and an integer $g$
Question: Does $G$ have a topological embedding in the orientable (or non-orientable) surface of genus $g$ ?

NP-complete [Thomassen, 1989]

## Existing algorithms

- [Mohar, 1999]: $f(g) \cdot n$
- [Kawarabayashi, Mohar, Reed, 2008]: $2^{\text {poly }(g)} \cdot n$
- Graph minor theory: $f(g) \cdot n^{3}$ [Robertson and Seymour, 1995]+[Adler et al., 2008].


## Motivation

Many problems can be solved faster for graphs embeddable on a fixed surface than for general graphs (shortest paths, (multi)flows and (multi)cuts, disjoint paths, (sub)graph isomorphism, TSP, Steiner trees, etc.)

## Embedding graphs in topological spaces

```
Input: • A graph G,
- a topological space \(T\).
Question: Does \(G\) have a topological embedding on \(T\) ?
```

- model topological spaces as simplicial complexes;
- actually as 2-dimensional simplicial complexes, or 2-complexes: graphs on which we attach a triangle to some of its cycles of length 3.



## Embedding graphs in topological spaces

```
Input: • A graph G,
- a topological space \(T\).
Question: Does \(G\) have a topological embedding on \(T\) ?
```

- model topological spaces as simplicial complexes;
- actually as 2-dimensional simplicial complexes, or 2-complexes: graphs on which we attach a triangle to some of its cycles of length 3.



## Embedding graphs in topological spaces

```
Input: • A graph G,
- a topological space \(T\).
Question: Does \(G\) have a topological embedding on \(T\) ?
```

- model topological spaces as simplicial complexes;
- actually as 2-dimensional simplicial complexes, or 2-complexes: graphs on which we attach a triangle to some of its cycles of length 3.



## Embedding graphs in topological spaces

```
Input: • A graph G,
- a topological space \(T\).
Question: Does \(G\) have a topological embedding on \(T\) ?
```

- model topological spaces as simplicial complexes;
- actually as 2-dimensional simplicial complexes, or 2-complexes: graphs on which we attach a triangle to some of its cycles of length 3.



## Embedding graphs in topological spaces

Input: |  | A graph $G$, |
| ---: | :--- |
|  | - a topological space $T \quad$ simplicial complex $C$. |

Question: Does $G$ have a topological embedding on $C$ ?

- model topological spaces as simplicial complexes;
- actually as 2-dimensional simplicial complexes, or 2-complexes: graphs on which we attach a triangle to some of its cycles of length 3.



## Embedding graphs in topological spaces

Input: $\quad$ A graph $G$,

- a topological space $T \quad$ simplicial complex $C$.

Question: Does $G$ have a topological embedding on C?

- model topological spaces as simplicial complexes;
- actually as 2-dimensional simplicial complexes, or 2-complexes: graphs on which we attach a triangle to some of its cycles of length 3.


Input: - A graph G,

- a topological space $T 2$-dim simplicial complex $C$.

Question: Does $G$ have a topological embedding on $C$ ?

- model topological spaces as simplicial complexes;
- actually as 2-dimensional simplicial complexes, or 2-complexes: graphs on which we attach a triangle to some of its cycles of length 3.


Input: - A graph G,

- a topological space $T 2$-dim simplicial complex $C$.

Question: Does $G$ have a topological embedding on $C$ ?

- model topological spaces as simplicial complexes;
- actually as 2-dimensional simplicial complexes, or 2-complexes: graphs on which we attach a triangle to some of its cycles of length 3.



## Our result

## NP-hardness

- Any surface of genus $g$ is (homeomorphic to) a 2-complex with $O(g)$ simplices;
- deciding embeddability of a graph on a surface is NP-hard [Thomassen, 1989];
- thus, our problem is NP-hard.


## Our result



## NP-hardness

- Any surface of genus $g$ is (homeomorphic to) a 2-complex with $O(g)$ simplices;
- deciding embeddability of a graph on a surface is NP-hard [Thomassen, 1989];
- thus, our problem is NP-hard.


## Algorithm [CdV, Magnard, 2021]

Given: - a graph $G$ with $n$ vertices and edges

- a 2-complex $C$ with $c$ simplices
one can decide whether $G$ has an embedding into $C$ in time $f(c) \cdot n^{2}$.


## Our result



## NP-hardness

- Any surface of genus $g$ is (homeomorphic to) a 2-complex with $O(g)$ simplices;
- deciding embeddability of a graph on a surface is NP-hard [Thomassen, 1989];
- thus, our problem is NP-hard.


## Algorithm [CdV, Magnard, 2021]

Given: - a graph $G$ with $n$ vertices and edges

- a 2-complex $C$ with $c$ simplices
one can decide whether $G$ has an embedding into $C$ in time $f(c) \cdot n^{2}$.


## Remarks

- independent from previous works to embed graphs on surfaces;
- previous result in $f(c) \cdot n^{O(c)}$ [CdV, Magnard, Mohar, 2018].


## Problem

Input: a graph $G$ and an integer $k$.
Problem: decide whether $G$ can be drawn in the plane with at most $k$ crossings.

## Results

- NP-hard [Garey, 1983],
- linear-time for fixed $k$ [Kawarabayashi and Reed, 2007],
- our result directly implies a quadratic-time algorithm for a more general problem.



## Problem

Input: a graph $G$ and an integer $k$.
Problem: decide whether $G$ can be drawn in the plane with at most $k$ crossings.

## Results

- NP-hard [Garey, 1983],
- linear-time for fixed $k$ [Kawarabayashi and Reed, 2007],
- our result directly implies a quadratic-time algorithm for a more general problem.



## Problem

Input: a graph $G$ and an integer $k$.
Problem: decide whether $G$ can be drawn in the plane with at most $k$ crossings.

## Results

- NP-hard [Garey, 1983],
- linear-time for fixed $k$ [Kawarabayashi and Reed, 2007],
- our result directly implies a quadratic-time algorithm for a more general problem.


The graphs embeddable on a given 2-complex is not minor-closed.

The graphs embeddable on a given 2-complex is not minor-closed.

## Why 2-complexes are/look harder to handle than surfaces

The graphs embeddable on a given 2-complex is not minor-closed.

Some problems are harder on 2-complexes than on surfaces:

| problem | surfaces | 2-complexes |
| :--- | :--- | :--- |
| homeomorphism | linear-time | same as graph isomor- <br> phism [Ó Dúnlaing et al., <br> $2000]$ |
|   <br> deciding contractibility of  <br> curves  | linear-time [Dey and <br> Guha, 199] | undecidable <br> 1959] |

## Why 2-complexes are still manageable

Every graph is embeddable in a 3-book. So wlog Contains no 3-book.


Every graph is embeddable in a 3-book. So wlog Contains no 3-book.


Every graph is embeddable in a 3-book. So wlog Contains no 3-book.


Every graph is embeddable in a 3-book. So wlog Contains no 3-book.


Every graph is embeddable in a 3-book. So wlog Contains no 3-book.


## Why 2-complexes are still manageable

Every graph is embeddable in a 3-book. So wlog Contains no 3-book.

Let $C$ be a 2-complex without 3-book. Every graph embeddable on $C$ is embeddable on a surface of genus $O(c)$.


Sketch of the algorithm

## Overview

Branch decomposition of $G$

- Branch decomposition $B$ : unrooted binary tree with leaves in bijection with the edges of $G$;
- each edge of $B$ induces a bipartition of the edges of $G$. $B$ has width $\leq k$ if the middle set, the set of vertices appearing
on both sides of an induced bipartition, is always $\leq k$.


Credits: wikipedia


## Overview

Branch decomposition of $G$

- Branch decomposition $B$ : unrooted binary tree with leaves in bijection with the edges of $G$;
- each edge of $B$ induces a bipartition of the edges of $G$.
- $B$ has width $\leq k$ if the middle set, the set of vertices appearing on both sides of an induced bipartition, is always $\leq k$.


Credits: wikipedia


## Overview

Branch decomposition of $G$

- Branch decomposition $B$ : unrooted binary tree with leaves in bijection with the edges of $G$;
- each edge of $B$ induces a bipartition of the edges of $G$.
- $B$ has width $\leq k$ if the middle set, the set of vertices appearing on both sides of an induced bipartition, is always $\leq k$.


## Standard strategy

(1) Reduce to the case where $G$ has a branch decomposition of width $w=\operatorname{poly}(c)$;
(2) use dynamic programming on a branch decomposition of $G$.

Inspired from [Kociumaka and Ma. Pilipczuk, 2019]
If $G$ has no branch decomposition of small width, then it has (a subdivision of) a large grid [Robertson and Seymour, 1995].
In $O(n)$ time, find a planar subgraph of $G$

- containing a subdivision of a large grid
- connected to the rest of the graph only via its outside cycle.


Inspired from [Kociumaka and Ma. Pilipczuk, 2019]
If $G$ has no branch decomposition of small width, then it has (a subdivision of) a large grid [Robertson and Seymour, 1995].
In $O(n)$ time, find a planar subgraph of $G$

- containing a subdivision of a large grid
- connected to the rest of the graph only via its outside cycle.

The central vertex is irrelevant.


Inspired from [Kociumaka and Ma. Pilipczuk, 2019]
If $G$ has no branch decomposition of small width, then it has (a subdivision of) a large grid [Robertson and Seymour, 1995].
In $O(n)$ time, find a planar subgraph of $G$

- containing a subdivision of a large grid
- connected to the rest of the graph only via its outside cycle.

The central vertex is irrelevant.


Inspired from [Kociumaka and Ma. Pilipczuk, 2019]
If $G$ has no branch decomposition of small width, then it has (a subdivision of) a large grid [Robertson and Seymour, 1995].
In $O(n)$ time, find a planar subgraph of $G$

- containing a subdivision of a large grid
- connected to the rest of the graph only via its outside cycle.

The central vertex is irrelevant.


## Bottom-up dynamic programming

## Intuition

Choose a root of the branch decomposition $B$ and apply bottom-up dynamic programming.
For every induced bipartition ( $E_{1}, E_{2}$ ), memoize

- all the possible shapes of "regions" of $C$ that can be occupied by $E_{2}$
- and, for each such shape, the location of the vertices of the middle set of ( $E_{1}, E_{2}$ ) (the "boundary" of the region).


Credits: wikipedia


## Bottom-up dynamic programming

## Intuition

Choose a root of the branch decomposition $B$ and apply bottom-up dynamic programming.
For every induced bipartition ( $E_{1}, E_{2}$ ), memoize

- all the possible shapes of "regions" of $C$ that can be occupied by $E_{2}$
- and, for each such shape, the location of the vertices of the middle set of ( $E_{1}, E_{2}$ ) (the "boundary" of the region).


## Problems

(1) represent such regions,
(O) prove that there are not too many such possibilities.

## Representing regions: Partitioning graphs

Assume $G$ is embedded on $C$. To every induced bipartition ( $E_{1}, E_{2}$ ), we define a partitioning graph $P\left(E_{1}, E_{2}\right)$ separating $E_{1}$ and $E_{2}$.


- Regions are labelled 0 (no part of the graph), $1\left(E_{1}\right), 2\left(E_{2}\right)$;
- vertices are labelled essentially by vertices of the middle set.


## Representing regions: Partitioning graphs

Assume $G$ is embedded on $C$. To every induced bipartition ( $E_{1}, E_{2}$ ), we define a partitioning graph $P\left(E_{1}, E_{2}\right)$ separating $E_{1}$ and $E_{2}$.


- Regions are labelled 0 (no part of the graph), $1\left(E_{1}\right), 2\left(E_{2}\right)$;
- vertices are labelled essentially by vertices of the middle set.


## Representing regions: Partitioning graphs

Assume $G$ is embedded on $C$. To every induced bipartition ( $E_{1}, E_{2}$ ), we define a partitioning graph $P\left(E_{1}, E_{2}\right)$ separating $E_{1}$ and $E_{2}$.


- Regions are labelled 0 (no part of the graph), $1\left(E_{1}\right), 2\left(E_{2}\right)$;
- vertices are labelled essentially by vertices of the middle set.


## Representing regions: Partitioning graphs

Assume $G$ is embedded on $C$. To every induced bipartition ( $E_{1}, E_{2}$ ), we define a partitioning graph $P\left(E_{1}, E_{2}\right)$ separating $E_{1}$ and $E_{2}$.


## Representing regions: Partitioning graphs

Assume $G$ is embedded on $C$. To every induced bipartition ( $E_{1}, E_{2}$ ), we define a partitioning graph $P\left(E_{1}, E_{2}\right)$ separating $E_{1}$ and $E_{2}$.


## Number of possibilities in the dynamic program

## Main Lemma

If $G$ embeds on $C$, then it has an embedding in which every partitioning graph (w.r.t. $B$ ) has $O(c+w)$ vertices, edges, and faces.

Sketch of proof

- By moving around monogons and bigons: $P\left(E_{1}, E_{2}\right)$ does not have too many monogons or bigons.


## Number of possibilities in the dynamic program

## Main Lemma

If $G$ embeds on $C$, then it has an embedding in which every partitioning graph (w.r.t. $B$ ) has $O(c+w)$ vertices, edges, and faces.

## Sketch of proof

- By moving around monogons and bigons: $P\left(E_{1}, E_{2}\right)$ does not have too many monogons or bigons.



## Number of possibilities in the dynamic program

## Main Lemma

If $G$ embeds on $C$, then it has an embedding in which every partitioning graph (w.r.t. $B$ ) has $O(c+w)$ vertices, edges, and faces.

## Sketch of proof

- By moving around monogons and bigons: $P\left(E_{1}, E_{2}\right)$ does not have too many monogons or bigons.
- Need to check that such operations are compatible for all induced bipartitions ( $E_{1}, E_{2}$ ).


## Number of possibilities in the dynamic program

## Main Lemma

If $G$ embeds on $C$, then it has an embedding in which every partitioning graph (w.r.t. $B$ ) has $O(c+w)$ vertices, edges, and faces.

## Sketch of proof

- By moving around monogons and bigons: $P\left(E_{1}, E_{2}\right)$ does not have too many monogons or bigons.
- Need to check that such operations are compatible for all induced bipartitions ( $E_{1}, E_{2}$ ).


## Fact

Up to homeomorphism, there are $(c+w)^{O(c+w)}$ embeddings of graphs with $O(c+w)$ vertices, edges, and faces into $C$.

## Number of possibilities in the dynamic program

## Main Lemma

If $G$ embeds on $C$, then it has an embedding in which every partitioning graph (w.r.t. $B$ ) has $O(c+w)$ vertices, edges, and faces.

## Sketch of proof

- By moving around monogons and bigons: $P\left(E_{1}, E_{2}\right)$ does not have too many monogons or bigons.
- Need to check that such operations are compatible for all induced bipartitions $\left(E_{1}, E_{2}\right)$.


## Fact

Up to homeomorphism, there are $(c+w)^{O(c+w)}$ embeddings of graphs with $O(c+w)$ vertices, edges, and faces into $C$.

+ many other details (data structures for graphs on 2-complexes; definition of partitioning graph; assuming cellular embeddings... ).

Thank you for your attention!
Questions?

