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3-manifolds �bered over the circle

A 3-manifold M is �bered over the circle if there is an embedded

surface S ↪→ M such that M − S is homeomorphic to S × [0, 1]

Then

M = (S × [0, 1])
/
{(x , 1) ∼ (ψ(x), 0)}

for some homeomorphism ψ : S → S (monodromy of the �bration)

Thurston: M is hyperbolic i� ψ is pseudo-Anosov

A pseudo-Anosov ψ has an associated stretch factor λ
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Thurston norm

M � �nite volume oriented hyperbolic 3-manifold

Thurston:

A norm on H2(M, ∂M;R) such that if α is integral then

‖α‖
Th

= inf
{
−χ(S)

∣∣ S represents α and has no S2, D2 components
}
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Fibered faces of the Thurston norm ball

The unit ball BTh of the Thurston norm:

I is a polytope (has faces)

I the homology class of the �ber of a �bration of M lies in the

interior of the cone C(F) over a top-dimensional face F of BTh

I any primitive integral class from int C(F) can be represented by

a �ber of a �bration of M over the circle

Such faces of BTh are called �bered faces
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Fibrations lying over the same �bered face

If b1(M) > 1 and M is �bered over the circle then it �bers in

in�nitely many distinct ways.

Question

How the stretch factors of di�erent �brations lying over the

same �bered face behave?
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Teichmüller polynomial

[McMullen, 1999]

polynomial invariant of a �bered face of the Thurston norm ball

ΘF =
∑
h∈H

ah · h ∈ Z[H],

where ah ∈ Z and H = H1(M;Z) /torsion

α ∈ C(F) ∩ H2(M, ∂M;Z) primitive

the stretch factor of the monodromy of the �bration determined by

α is equal to the largest real root of

Θα
F

(z) =
∑
h∈H

ah · z〈α,h〉
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Teichmüller polynomial � applications and computation

I can be computed using just one �bration

I can be used to compute stretch factors of all �brations lying

over the same �bered face

I can be used to �nd F

Computation

I McMullen's original algorithm general but hard to implement

I simpler algorithms that works in some special cases: Lanneau-

Valdez 2017, Baik-Wu-Kim-Jo 2020, Billet-Lechti 2019

I Landry-Minsky-Taylor 2019: the taut polynomial which generalizes

the Teichmüller polynomial
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Veering triangulations

special class of ideal triangulations of cusped 3-manifolds which

encode pseudo-Anosov �ows

I Fried: every �bered face of the Thurston norm ball has a

canonical (up to isotopy and reparametrization) circular pseudo-

Anosov �ow associated to it

I The Teichmüller polynomial is really an invariant of the associated

pseudo-Anosov �ow
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Taut polynomial
[Landry-Minsky-Taylor, 2019]

veering triangulation V  the taut polynomial ΘV

F � �bered face of the Thurston norm ball in H2(M, ∂M)

Λ = {`1, . . . , `k} � singular orbits of the associated �ow

Agol, 2010: M◦ = M − Λ has a veering triangulation V

which encodes the �ow associated to F

i : M◦ ↪→ M  i∗ : H1(M◦;Z) /torsion → H1(M;Z) /torsion

Landry-Minsky-Taylor, 2019: ΘF = i∗(ΘV)
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Computing the taut polynomial

n � number of tetrahedra of V

LMT's original de�nition: ΘV is the gcd of the maximal

minors of a n × 2n matrix with coe�cients in Z[H◦]

I Computing determinants of matrices over a ring which is not a

PID is slow.

I And there are
(
2n
n

)
> 2n determinants that we need to compute!

P., 2020: Algorithm to compute ΘV for any V

It is enough to compute n + 1 minors
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Computing the Alexander polynomial

Alexander polynomial ∆M of M can be computed

I using a triangulation of M:

n = # tetrahedra

have to compute the gcd of n + 1 minors of dimension n

I from any presentation of π1(M) using Fox calculus
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Fox calculus

Presentation π1(M) = 〈S | R〉  matrix J ∈ Z[π1(M)]|S |×|R|

(Jacobian matrix / Alexander matrix / Fox derivative )

Property of J: mapping its entries through a

π1(M)→ H1(M;Z)/torsion gives a matrix whose gcd of the

|R| × |R| minors is ∆M .

Major advantage: The fundamental group of a 3-manifold given

as a triangulation with n tetrahedra typically has a presentation

with (much) less than n relations.
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Fox calculus and twisted Alexander polynomials

Can consider di�erent representations of π1(M), eg.

π : π1(M)→ H1(M;Z)/torsion

ω : π1(M)→ Z/2 = {−1, 1}

tensor representation:

ω ⊗ π : π1(M)→ H1(M;Z)/torsion

(ω ⊗ π)(γ) = ω(γ) · π(γ)

the gcd of the |R| × |R| minors of (ω ⊗ π)(J) gives a twisted

Alexander polynomial ∆ω⊗π
M
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P., 2021

For any veering triangulation V of M there is

ω : π1(M)→ Z/2 such that ΘV = ∆ω⊗π
M

Consequences:

I Quick computation of the taut polynomial, and hence the

Teichmüller polynomial, using Fox calculus.

I For anyM only �nitely many candidates for the taut polynomial.

(No su�cient condition for the existence of a veering triangulation on

M is known, but we know what are the possible taut polynomials!)

I Algebraic properties of the taut polynomial = algebraic properties

of twisted Alexander polynomials.
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These computations are implemented (Veering GitHub), so we can

quickly draw pictures like this:

�bered class α  stretch factor λ

 entropy log(λ)

entropy for k · α is log(λ)
k

plotted:

unique point on the ray through α with

entropy = 1

(i.e. log(λ) · α)
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