The Teichmüller polynomial

via Fox calculus

(and veering triangulations)

Anna Parlak

 University of OxfordAMS-EMS-SMF International Meeting 2022
Grenoble, 18th of July 2022

3-manifolds fibered over the circle

A 3-manifold M is fibered over the circle if there is an embedded surface $S \hookrightarrow M$ such that $\overline{M-S}$ is homeomorphic to $S \times[0,1]$

3-manifolds fibered over the circle

A 3-manifold M is fibered over the circle if there is an embedded surface $S \hookrightarrow M$ such that $\overline{M-S}$ is homeomorphic to $S \times[0,1]$

Then

$$
M=(S \times[0,1]) /\{(x, 1) \sim(\psi(x), 0)\}
$$

for some homeomorphism $\psi: S \rightarrow S$ (monodromy of the fibration)

3-manifolds fibered over the circle

A 3-manifold M is fibered over the circle if there is an embedded surface $S \hookrightarrow M$ such that $\overline{M-S}$ is homeomorphic to $S \times[0,1]$

Then

$$
M=(S \times[0,1]) /\{(x, 1) \sim(\psi(x), 0)\}
$$

for some homeomorphism $\psi: S \rightarrow S$ (monodromy of the fibration)

Thurston: M is hyperbolic iff ψ is pseudo-Anosov

A pseudo-Anosov ψ has an associated stretch factor λ

Thurston norm

M - finite volume oriented hyperbolic 3-manifold

Thurston norm

M - finite volume oriented hyperbolic 3-manifold

Thurston:

A norm on $H_{2}(M, \partial M ; \mathbb{R})$ such that if α is integral then
$\|\alpha\|_{\mathrm{Th}}=\inf \left\{-\chi(S) \mid S\right.$ represents α and has no S^{2}, D^{2} components $\}$

Fibered faces of the Thurston norm ball

The unit ball \mathbb{B}_{Th} of the Thurston norm:

- is a polytope (has faces)

Fibered faces of the Thurston norm ball

The unit ball \mathbb{B}_{Th} of the Thurston norm:

- is a polytope (has faces)
- the homology class of the fiber of a fibration of M lies in the interior of the cone $\mathcal{C}(\mathrm{F})$ over a top-dimensional face F of \mathbb{B}_{Th}

Fibered faces of the Thurston norm ball

The unit ball $\mathbb{B}_{\text {Th }}$ of the Thurston norm:

- is a polytope (has faces)
- the homology class of the fiber of a fibration of M lies in the interior of the cone $\mathcal{C}(F)$ over a top-dimensional face F of \mathbb{B}_{Th}
- any primitive integral class from int $\mathcal{C}(\mathrm{F})$ can be represented by a fiber of a fibration of M over the circle

$$
\text { Such faces of } \mathbb{B}_{\mathrm{Th}} \text { are called fibered faces }
$$

Fibrations lying over the same fibered face

If $b_{1}(M)>1$ and M is fibered over the circle then it fibers in infinitely many distinct ways.

Question

How the stretch factors of different fibrations lying over the same fibered face behave?

Teichmüller polynomial

[McMullen, 1999]
polynomial invariant of a fibered face of the Thurston norm ball

Teichmüller polynomial

[McMullen, 1999]
polynomial invariant of a fibered face of the Thurston norm ball

$$
\Theta_{\mathrm{F}}=\sum_{h \in H} a_{h} \cdot h \in \mathbb{Z}[H],
$$

where $a_{h} \in \mathbb{Z}$ and $H=H_{1}(M ; \mathbb{Z}) /$ torsion

Teichmüller polynomial

[McMullen, 1999]
polynomial invariant of a fibered face of the Thurston norm ball

$$
\Theta_{\mathrm{F}}=\sum_{h \in H} a_{h} \cdot h \in \mathbb{Z}[H],
$$

where $a_{h} \in \mathbb{Z}$ and $H=H_{1}(M ; \mathbb{Z}) /$ torsion
$\alpha \in \mathcal{C}(F) \cap H_{2}(M, \partial M ; \mathbb{Z})$ primitive the stretch factor of the monodromy of the fibration determined by α is equal to the largest real root of

$$
\Theta_{\mathrm{F}}^{\alpha}(z)=\sum_{h \in H} a_{h} \cdot z^{\langle\alpha, h\rangle}
$$

Teichmüller polynomial - applications and computation

- can be computed using just one fibration
- can be used to compute stretch factors of all fibrations lying over the same fibered face
- can be used to find F

Teichmüller polynomial - applications and computation

- can be computed using just one fibration
- can be used to compute stretch factors of all fibrations lying over the same fibered face
- can be used to find F

Computation

- McMullen's original algorithm general but hard to implement
- simpler algorithms that works in some special cases: LanneauValdez 2017, Baik-Wu-Kim-Jo 2020, Billet-Lechti 2019
- Landry-Minsky-Taylor 2019: the taut polynomial which generalizes the Teichmüller polynomial

Veering triangulations

special class of ideal triangulations of cusped 3-manifolds which encode pseudo-Anosov flows

Veering triangulations

special class of ideal triangulations of cusped 3-manifolds which encode pseudo-Anosov flows

- Fried: every fibered face of the Thurston norm ball has a canonical (up to isotopy and reparametrization) circular pseudoAnosov flow associated to it
- The Teichmüller polynomial is really an invariant of the associated pseudo-Anosov flow

Taut polynomial

[Landry-Minsky-Taylor, 2019]
veering triangulation $\mathcal{V} \rightsquigarrow$ the taut polynomial $\Theta_{\mathcal{V}}$

Taut polynomial

[Landry-Minsky-Taylor, 2019]
veering triangulation $\mathcal{V} \rightsquigarrow$ the taut polynomial $\Theta_{\mathcal{V}}$

F - fibered face of the Thurston norm ball in $H_{2}(M, \partial M)$
$\Lambda=\left\{\ell_{1}, \ldots, \ell_{k}\right\}-$ singular orbits of the associated flow

Agol, 2010: $M^{\circ}=M-\Lambda$ has a veering triangulation \mathcal{V}
which encodes the flow associated to F

Taut polynomial

[Landry-Minsky-Taylor, 2019]
veering triangulation $\mathcal{V} \rightsquigarrow$ the taut polynomial $\Theta_{\mathcal{V}}$

F - fibered face of the Thurston norm ball in $H_{2}(M, \partial M)$
$\Lambda=\left\{\ell_{1}, \ldots, \ell_{k}\right\}-$ singular orbits of the associated flow

Agol, 2010: $M^{\circ}=M-\Lambda$ has a veering triangulation \mathcal{V} which encodes the flow associated to F
$i: M^{\circ} \hookrightarrow M \rightsquigarrow i_{*}: H_{1}\left(M^{\circ} ; \mathbb{Z}\right) /$ torsion $\rightarrow H_{1}(M ; \mathbb{Z}) /$ torsion

Landry-Minsky-Taylor, 2019:

$$
\Theta_{\mathrm{F}}=i_{*}\left(\Theta_{\mathcal{V}}\right)
$$

Computing the taut polynomial

n - number of tetrahedra of \mathcal{V}
LMT's original definition: $\Theta_{\mathcal{V}}$ is the gcd of the maximal minors of a $n \times 2 n$ matrix with coefficients in $\mathbb{Z}\left[H^{\circ}\right]$

Computing the taut polynomial

n - number of tetrahedra of \mathcal{V}
LMT's original definition: $\Theta_{\mathcal{V}}$ is the gcd of the maximal minors of a $n \times 2 n$ matrix with coefficients in $\mathbb{Z}\left[H^{\circ}\right]$

- Computing determinants of matrices over a ring which is not a PID is slow.
- And there are $\binom{2 n}{n}>2^{n}$ determinants that we need to compute!

Computing the taut polynomial

n - number of tetrahedra of \mathcal{V}
LMT's original definition: $\Theta_{\mathcal{V}}$ is the gcd of the maximal minors of a $n \times 2 n$ matrix with coefficients in $\mathbb{Z}\left[H^{\circ}\right]$

- Computing determinants of matrices over a ring which is not a PID is slow.
- And there are $\binom{2 n}{n}>2^{n}$ determinants that we need to compute!
P., 2020: Algorithm to compute $\Theta_{\mathcal{V}}$ for any \mathcal{V}

It is enough to compute $n+1$ minors

Computing the Alexander polynomial

Alexander polynomial Δ_{M} of M can be computed

- using a triangulation of M :
$n=\#$ tetrahedra
have to compute the gcd of $n+1$ minors of dimension n
- from any presentation of $\pi_{1}(M)$ using Fox calculus

Fox calculus

Presentation $\pi_{1}(M)=\langle S \mid R\rangle \rightsquigarrow$ matrix $J \in \mathbb{Z}\left[\pi_{1}(M)\right]^{|S| \times|R|}$
(Jacobian matrix / Alexander matrix / Fox derivative)

Property of J : mapping its entries through a
$\pi_{1}(M) \rightarrow H_{1}(M ; \mathbb{Z}) /$ torsion gives a matrix whose gcd of the
$|R| \times|R|$ minors is Δ_{M}.

Fox calculus

Presentation $\pi_{1}(M)=\langle S \mid R\rangle \rightsquigarrow$ matrix $J \in \mathbb{Z}\left[\pi_{1}(M)\right]^{|S| \times|R|}$
(Jacobian matrix / Alexander matrix / Fox derivative)

Property of J : mapping its entries through a
$\pi_{1}(M) \rightarrow H_{1}(M ; \mathbb{Z}) /$ torsion gives a matrix whose gcd of the
$|R| \times|R|$ minors is Δ_{M}.

Major advantage: The fundamental group of a 3-manifold given as a triangulation with n tetrahedra typically has a presentation with (much) less than n relations.

Fox calculus and twisted Alexander polynomials

Can consider different representations of $\pi_{1}(M)$, eg.
$\pi: \pi_{1}(M) \rightarrow H_{1}(M ; \mathbb{Z}) /$ torsion
$\omega: \pi_{1}(M) \rightarrow \mathbb{Z} / 2=\{-1,1\}$
tensor representation:

$$
\begin{gathered}
\omega \otimes \pi: \pi_{1}(M) \rightarrow H_{1}(M ; \mathbb{Z}) / \text { torsion } \\
(\omega \otimes \pi)(\gamma)=\omega(\gamma) \cdot \pi(\gamma)
\end{gathered}
$$

Fox calculus and twisted Alexander polynomials

Can consider different representations of $\pi_{1}(M)$, eg.
$\pi: \pi_{1}(M) \rightarrow H_{1}(M ; \mathbb{Z}) /$ torsion
$\omega: \pi_{1}(M) \rightarrow \mathbb{Z} / 2=\{-1,1\}$
tensor representation:

$$
\begin{gathered}
\omega \otimes \pi: \pi_{1}(M) \rightarrow H_{1}(M ; \mathbb{Z}) / \text { torsion } \\
(\omega \otimes \pi)(\gamma)=\omega(\gamma) \cdot \pi(\gamma)
\end{gathered}
$$

the gcd of the $|R| \times|R|$ minors of $(\omega \otimes \pi)(J)$ gives a twisted Alexander polynomial $\Delta_{M}^{\omega \otimes \pi}$
P., 2021

For any veering triangulation \mathcal{V} of M there is
$\omega: \pi_{1}(M) \rightarrow \mathbb{Z} / 2$ such that

$$
\Theta_{\mathcal{V}}=\Delta_{M}^{\omega \otimes \pi}
$$

For any veering triangulation \mathcal{V} of M there is $\omega: \pi_{1}(M) \rightarrow \mathbb{Z} / 2$ such that $\quad \Theta_{\mathcal{V}}=\Delta_{M}^{\omega \otimes \pi}$

Consequences:

- Quick computation of the taut polynomial, and hence the Teichmüller polynomial, using Fox calculus.
P., 2021

For any veering triangulation \mathcal{V} of M there is $\omega: \pi_{1}(M) \rightarrow \mathbb{Z} / 2$ such that $\quad \Theta_{\mathcal{V}}=\Delta_{M}^{\omega \otimes \pi}$

Consequences:

- Quick computation of the taut polynomial, and hence the Teichmüller polynomial, using Fox calculus.
- For any M only finitely many candidates for the taut polynomial.
(No sufficient condition for the existence of a veering triangulation on
M is known, but we know what are the possible taut polynomials!)
P., 2021

For any veering triangulation \mathcal{V} of M there is $\omega: \pi_{1}(M) \rightarrow \mathbb{Z} / 2$ such that $\quad \Theta_{\mathcal{V}}=\Delta_{M}^{\omega \otimes \pi}$

Consequences:

- Quick computation of the taut polynomial, and hence the Teichmüller polynomial, using Fox calculus.
- For any M only finitely many candidates for the taut polynomial. (No sufficient condition for the existence of a veering triangulation on M is known, but we know what are the possible taut polynomials!)
- Algebraic properties of the taut polynomial = algebraic properties of twisted Alexander polynomials.

These computations are implemented (Veering GitHub), so we can quickly draw pictures like this:

$$
\begin{gathered}
\text { fibered class } \alpha \rightsquigarrow \operatorname{stretch} \text { factor } \lambda \\
\qquad \rightsquigarrow \text { entropy } \log (\lambda) \\
\text { entropy for } k \cdot \alpha \text { is } \frac{\log (\lambda)}{k} \\
\text { plotted: }
\end{gathered}
$$

unique point on the ray through α with

$$
\text { entropy }=1
$$

(i.e. $\log (\lambda) \cdot \alpha$)

