
Computational Complexity and Knot Theory

Arnaud de Mesmay (CNRS, LIGM, Université Gustave Eiffel, Paris)

AMS-SMF-EMS Meeting, Grenoble, 2022

1 / 36



Knot Theory

Knots
A knot is a nice map K : S1 → R3.
Two knots are equivalent if they are ambient isotopic, i.e., if there
exists a continuous deformation from one into the other without
crossings.
A link is a disjoint union of knots.

2 / 36



Knot diagrams

Diagrams
A knot diagram is a 2D-projection of a knot where at every vertex, one
indicates which strand goes above and below.

The crossing number of a knot K is a minimum number of crossings over all
knot diagrams for K .

Theorem (Reidemeister)
Two knot diagrams correspond to equivalent knots if and only if they can be
related by a sequence of Reidemeister moves.

3 / 36



Knot equivalence

Knot equivalence
Input: Two knots K1 and K2 represented by diagrams.
Output: Is K1 equivalent to K2?

=
?

What is the best known algorithm for this problem?

Decidable [Haken’68, Hemion ’79, Matveev ’07].
Best bound on Reidemeister moves is from [Lackenby-Coward ’14]:

22
.2
n1+n2

}
height cn1+n2 where c = 101000000.

[Kuperberg ’19] provides an elementary algorithm, i.e., with a tower of
exponentials of constant size.

This problem does not look easy. Perhaps one can prove that it is hard?

4 / 36



Knot equivalence

Knot equivalence
Input: Two knots K1 and K2 represented by diagrams.
Output: Is K1 equivalent to K2?

=
?

What is the best known algorithm for this problem?
Decidable [Haken’68, Hemion ’79, Matveev ’07].
Best bound on Reidemeister moves is from [Lackenby-Coward ’14]:

22
.2
n1+n2

}
height cn1+n2 where c = 101000000.

[Kuperberg ’19] provides an elementary algorithm, i.e., with a tower of
exponentials of constant size.

This problem does not look easy. Perhaps one can prove that it is hard?

5 / 36



Knot equivalence

Knot equivalence
Input: Two knots K1 and K2 represented by diagrams.
Output: Is K1 equivalent to K2?

=
?

What is the best known algorithm for this problem?
Decidable [Haken’68, Hemion ’79, Matveev ’07].
Best bound on Reidemeister moves is from [Lackenby-Coward ’14]:

22
.2
n1+n2

}
height cn1+n2 where c = 101000000.

[Kuperberg ’19] provides an elementary algorithm, i.e., with a tower of
exponentials of constant size.

This problem does not look easy. Perhaps one can prove that it is hard?
6 / 36



The very basics of computational complexity I

A decision problem is in P (polynomial-time) if there exists an
algorithm solving instances of size n in time p(n), where p is a
polynomial.
A decision problem is in NP (non-deterministic polynomial-time) if
there exists an algorithm verifying positive instances of size n with a
hint of size h(n) in time p(n), where p and h are polynomial.

Example: Non-primality
One can easily verify that a number is non-prime when one is given its
prime factors as a hint.

A decision problem is in co-NP if its complement is in NP.

Example: Primality
Primality testing is in co-NP because of the previous example.

7 / 36



The very basics of computational complexity II

Standard conjectures
P 6= NP 6= co-NP.

A problem is NP-hard if any problem in NP reduces in polynomial
time to it. In particular, a problem being both in P (resp. co-NP)
and NP-hard would mean that P = NP (resp. co-NP=NP).
Rule of thumb in many parts of theoretical computer science (e.g.,
graph theory): every reasonable problem, except a few well-known
exceptions, is in P or is NP-hard (see for example the Feder-Vardi
conjecture [Bulatov, Zhuk ’17])

Most problems in knot theory are not known to fit in this dichotomy.

8 / 36



NP-hard problems in knot theory

Is knot equivalence NP-hard?

We do not know.
It is consistent with the state of the art that it can be solved in linear
time.
Most problems in knot theory are very hard to compute in practice. Is
any of them NP-hard?
When I started working on these problems ten years ago, there were
to my knowledge only two known computational hardness results in
knot theory:

1 Given a knot K in a 3-manifold M, is the genus of K at most g?
[Agol-Hass-Thurston ’95]

2 It is #P-hard to compute [Jaeger, Vertigan, Welsh ’90], or even
approximate [Kuperberg ’15] the Jones polynomial of a knot.

Since then, many new results, but still many open problems.

9 / 36



NP-hard problems in knot theory

Is knot equivalence NP-hard? We do not know.
It is consistent with the state of the art that it can be solved in linear
time.

Most problems in knot theory are very hard to compute in practice. Is
any of them NP-hard?
When I started working on these problems ten years ago, there were
to my knowledge only two known computational hardness results in
knot theory:

1 Given a knot K in a 3-manifold M, is the genus of K at most g?
[Agol-Hass-Thurston ’95]

2 It is #P-hard to compute [Jaeger, Vertigan, Welsh ’90], or even
approximate [Kuperberg ’15] the Jones polynomial of a knot.

Since then, many new results, but still many open problems.

10 / 36



NP-hard problems in knot theory

Is knot equivalence NP-hard? We do not know.
It is consistent with the state of the art that it can be solved in linear
time.
Most problems in knot theory are very hard to compute in practice. Is
any of them NP-hard?
When I started working on these problems ten years ago, there were
to my knowledge only two known computational hardness results in
knot theory:

1 Given a knot K in a 3-manifold M, is the genus of K at most g?
[Agol-Hass-Thurston ’95]

2 It is #P-hard to compute [Jaeger, Vertigan, Welsh ’90], or even
approximate [Kuperberg ’15] the Jones polynomial of a knot.

Since then, many new results, but still many open problems.

11 / 36



Why should we care?

1 NP-hardness traces a line between problems that can be solved in
polynomial time and those that cannot.

2 Some problems in knot theory are very likely not NP-hard:

Unknot recognition
Input: A knot K represented by a diagram.
Output: Is K equivalent to the trivial knot?

=
?

In NP ∩ co −NP [Hass-Lagarias-Pippenger ’99], [Agol’02 → Lackenby ’18].
Actually, computing the genus is in NP ∩ co −NP [Lackenby ’21], even
in a fixed 3-manifold [Lackenby-Yazdi ’20]

12 / 36



Some knot invariants

Tri-colorability: Can I color my knot using three different colors and
the following rules?

More generally: does there exist a non-trivial homomorphism of
π1(S3 \ K ) into a fixed finite group G that sends a meridian to a fixed conjugacy class C?

Theorem (Kuperberg-Samperton ’21)
If G is fixed, non-abelian and simple (for example A5), this problem is
NP-hard. (More generally counting the number of representations is #P-hard.)

Polynomial invariants: Computing the Alexander polynomial of a knot
can be done in polynomial-time, but computing/approximating the
Jones polynomial is #P-hard [Jaeger-Vertigan-Welsh ’90, Kuperberg ’15].

These are the only* known hard problems for classical knots. Other
hardness results work with knots in 3-manifolds, or with links.

13 / 36



Some previous NP-hardness results

Knot genus in a 3-manifold [Agol-Hass-Thurston ’05].
Thurston norm of a link [Lackenby ’17].

14 / 36



Some previous NP-hardness results

In [dM-Rieck-Sedgwick-Tancer ’21], we started from a nice similarity between
Borromean rings and SAT clauses to show that the following problems are
NP-hard:

C = v1 ∨ v2 ∨ v3

15 / 36



Some previous NP-hardness results

Finding a sublink [Lackenby ’17], finding a trivial
sublink [Koenig-Tsvietkova’21],[dM-Rieck-Sedgwick-Tancer ’21].

φ = (t ∨ x ∨ y) ∧ (¬x ∨ y ∨ z)

⊂

16 / 36



Some previous NP-hardness results

Unlinking number [Koenig-Tsvietkova’21],[dM-Rieck-Sedgwick-Tancer’21].

17 / 36



Some previous NP-hardness results

Four-ball Euler characteristic χ4(L) [dM-Rieck-Sedgwick-Tancer’21].

18 / 36



Some previous NP-hardness results

Deciding whether a knot can be turned into a trivial diagram using at
most k Reidemeister moves [dM-Rieck-Sedgwick-Tancer ’21].

Φ = (x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x4) ∧ (x1 ∨ ¬x3 ∨ ¬x4)

x1

x2 x3
x4

¬x1
¬x2

¬x3
¬x4

19 / 36



Computing the crossing number

Crossing number
Input: A knot/link diagram D.
Output: Is the crossing number of the knot/link at most k?

Best known algorithm to decide whether the crossing number of a link L is
at most k:

for i = 1 . . . k do
for All the link diagrams D with i crossings do

Test whether D and L are the same link.
end for

end for

Marc Lackenby
“[This algorithm] is obviously not very efficient but it seems unlikely that
there is any quicker way of determining a link’s crossing number in
general.”

20 / 36



Hardness of the crossing number

Theorem (Schaefer, Sedgwick, dM’20)
The crossing number problem for links is NP-hard.

First reaction: of course it’s NP-hard, there should be an easy
reduction from the graph crossing number .

Yes but not that easy: it is open whether the crossing number of a
knot is NP-hard.

21 / 36



Hardness of the crossing number

Theorem (Schaefer, Sedgwick, dM’20)
The crossing number problem for links is NP-hard.

First reaction: of course it’s NP-hard, there should be an easy
reduction from the graph crossing number .
Yes but not that easy: it is open whether the crossing number of a
knot is NP-hard.

22 / 36



A naive reduction

The crossing number of a graph G is the minimum number of edge
crossings in a plane drawing of G .

It is notoriously unwieldy, for example the exact values of the crossing
numbers of complete graphs Kn and complete bipartite graph Km,n

are unknown.

Theorem (Garey-Johnson ’83)
Computing the crossing number of a graph is NP-hard.

Transforming a graph into a link.

But when changing the cyclic ordering around the vertex, the link
gets all tangled up.

We must prevent the components corresponding to vertices from
stretching.

23 / 36



A naive reduction

Theorem (Garey-Johnson ’83)
Computing the crossing number of a graph is NP-hard.

Transforming a graph into a link.

But when changing the cyclic ordering around the vertex, the link
gets all tangled up.
We must prevent the components corresponding to vertices from
stretching.

24 / 36



The actual reduction

We reduce from a specific variant of the graph crossing number, where the
cyclic orderings are fixed:

Theorem (Muñoz-Unger-Vrťo ’02)
Determining the bipartite crossing number of a bipartite graph
G = (U ∪ V ,E ) in which all vertices in U have degree 4, all vertices in V
have degree 1, and the order of the V -vertices along their line is fixed, is
NP-complete.

U

V

1 2 3 4 5 6 7 8 9 10 11 12

which we transform into...
25 / 36





Why does this work?

One direction is immediate: from a graph drawing with low crossing
number we get a link diagram with low crossing number.

For the other direction, we want to prove that in any diagram of low
crossing number, things are as we would expect:

the frame is rigid and

the only things moving are the red curves.

27 / 36



Using linking numbers

Main tool: Linking numbers.
With linking numbers, we can prove that this diagram of the frame is
the unique one with a minimal number of crossings.

Then the hope is that the placement of the frame forces other
crossings (even those not forced by linking numbers).
But adding the other gadgets may break the rigidity of the frame.

28 / 36



Weighted crossings

This is a common issue in reductions involving crossing numbers.
We can gain rigidity by putting big weights: each edges has a weight
we , and the weighted crossing number of e and f crossing is wewf .
This can be easily simulated by using multiple edges.

In the setting of graphs, it is immediate that all the multiple edges
will be drawn the same way in some crossing-minimal drawing.
Big weights can enforce rigidity.

29 / 36



Weighted knots

Likewise, we can use multiple copies of knot to represent weights:

However:
Self-crossings throw off the accounting, hence we use unknots in the
reduction.

We can not argue that in a crossing-minimal drawing, all the copies of
a knot will be drawn the same way.

30 / 36



Our solution

We do use weighted knots, and choose weights wisely.
When arguing that things look like we want them to look, we use a
relaxed notion of equivalence.

Two links are parity-link equivalent if the parity of the linking number
between pairs of components is the same in both crossings.

=

31 / 36



Parity-link equivalence is simpler to handle

Lemma
For any link L, let D ′ be a diagram with a minimum number of crossings
of a link L′ which is parity-link equivalent to L. Then no link component in
D ′ has self-crossings.

Proof:

32 / 36



Working from a different link.

The argument showing that the frame is rigid is only based on linking
numbers!

So, if L has a drawing with a low crossing number:
We look at the crossing-minimal drawing D of a link L′ that is
parity-link equivalent to our link L. It also has a low number of
crossings.
L′ might be different from L, but it does not matter:
There, the frame is rigid.
Likewise, the only non-rigid pieces are the moving red curves.
We can find a drawing of our original bipartite graph from D with few
crossings.

We also get NP-hardness for the minimal crossing number under other
notions of equivalence: parity-link equivalence, linking-number
equivalence, link-homotopy and link concordance.

33 / 36



What next?

How to adapt this to knots? Or links with a bounded number of
components? Alternating knots might help but the weighting issue is
problematic.
Is it still hard for a fixed value of the crossing number? Note that for
a fixed k , determining whether a graph has crossing number at most
k can be done in linear-time [Kawarabayashi-Reed’07].
What about the bridge number? (minimum number of bridges to
draw the knot)

34 / 36



One more speculative slide

What is the computational complexity of knot problems where one forces
to stay in the PL category with at most k segments? For example:

Complexity of the stick number (minimum number of segments to
realize a knot)?
Complexity of deciding whether two knots made of k segments can be
isotoped to each other using knots made of k segments?

I would expect strong connections to the theory of linkages and the
existential theory of the reals. In particular, is the space of realizations of
a knot universal in the sense of Mnev?

Open problem: Stuck geometric unknots, [Calvo ’01]
Are there topological unknots which cannot be untangled geometrically in
the sense above?

Thank you! Questions?

35 / 36



One more speculative slide

What is the computational complexity of knot problems where one forces
to stay in the PL category with at most k segments? For example:

Complexity of the stick number (minimum number of segments to
realize a knot)?
Complexity of deciding whether two knots made of k segments can be
isotoped to each other using knots made of k segments?

I would expect strong connections to the theory of linkages and the
existential theory of the reals. In particular, is the space of realizations of
a knot universal in the sense of Mnev?

Open problem: Stuck geometric unknots, [Calvo ’01]
Are there topological unknots which cannot be untangled geometrically in
the sense above?

Thank you! Questions?

36 / 36



Our original motivation: Embed2→3 and Embed3→3

This 3-manifold embeds into S3 if and only if Φ is satisfiable.
→ Deciding whether a 3 or a 2-dimensional space embeds into R3 is
NP-hard.
Best algorithm runs in a tower of exponentials [Matoušek, Sedgwick, Tancer,
Wagner ’16].

37 / 36


