## Computational Complexity and Knot Theory

Arnaud de Mesmay (CNRS, LIGM, Université Gustave Eiffel, Paris)



AMS-SMF-EMS Meeting, Grenoble, 2022

## Knot Theory

## Knots

- A knot is a nice map $K: S^{1} \rightarrow \mathbb{R}^{3}$.
- Two knots are equivalent if they are ambient isotopic, i.e., if there exists a continuous deformation from one into the other without crossings.
- A link is a disjoint union of knots.



## Knot diagrams

## Diagrams

- A knot diagram is a 2D-projection of a knot where at every vertex, one indicates which strand goes above and below.
- The crossing number of a knot $K$ is a minimum number of crossings over all knot diagrams for $K$.



## Theorem (Reidemeister)

Two knot diagrams correspond to equivalent knots if and only if they can be related by a sequence of Reidemeister moves.




## Knot equivalence

## Knot equivalence

Input: Two knots $K_{1}$ and $K_{2}$ represented by diagrams.
Output: Is $K_{1}$ equivalent to $K_{2}$ ?


What is the best known algorithm for this problem?

## Knot equivalence

## Knot equivalence

Input: Two knots $K_{1}$ and $K_{2}$ represented by diagrams.
Output: Is $K_{1}$ equivalent to $K_{2}$ ?


What is the best known algorithm for this problem?

- Decidable [Haken'68, Hemion '79, Matveev '07].
- Best bound on Reidemeister moves is from [Lackenby-Coward '14]:

$$
\left.2^{2^{2} 2^{n_{1}+n_{2}}}\right\} \text { height } c^{n_{1}+n_{2}} \text { where } c=10^{1000000}
$$

- [Kuperberg '19] provides an elementary algorithm, i.e., with a tower of exponentials of constant size.


## Knot equivalence

## Knot equivalence

Input: Two knots $K_{1}$ and $K_{2}$ represented by diagrams.
Output: Is $K_{1}$ equivalent to $K_{2}$ ?


What is the best known algorithm for this problem?

- Decidable [Haken'68, Hemion '79, Matveev '07].
- Best bound on Reidemeister moves is from [Lackenby-Coward '14]:

$$
\left.2^{2^{2} 2^{n_{1}+n_{2}}}\right\} \text { height } c^{n_{1}+n_{2}} \text { where } c=10^{1000000}
$$

- [Kuperberg '19] provides an elementary algorithm, i.e., with a tower of exponentials of constant size.
This problem does not look easy. Perhaps one can prove that it is hard?


## The very basics of computational complexity I

- A decision problem is in $\mathbf{P}$ (polynomial-time) if there exists an algorithm solving instances of size $n$ in time $p(n)$, where $p$ is a polynomial.
- A decision problem is in NP (non-deterministic polynomial-time) if there exists an algorithm verifying positive instances of size $n$ with a hint of size $h(n)$ in time $p(n)$, where $p$ and $h$ are polynomial.


## Example: Non-primality

One can easily verify that a number is non-prime when one is given its prime factors as a hint.

- A decision problem is in co-NP if its complement is in NP.


## Example: Primality

Primality testing is in co-NP because of the previous example.

## The very basics of computational complexity II

## Standard conjectures

$\mathbf{P} \neq \mathbf{N P} \neq$ co-NP.

- A problem is NP-hard if any problem in NP reduces in polynomial time to it. In particular, a problem being both in $\mathbf{P}$ (resp. co-NP) and NP-hard would mean that $\mathbf{P}=\mathbf{N P}$ (resp. co-NP=NP).
- Rule of thumb in many parts of theoretical computer science (e.g., graph theory): every reasonable problem, except a few well-known exceptions, is in $\mathbf{P}$ or is NP-hard (see for example the Feder-Vardi conjecture [Bulatov, Zhuk '17])
- Most problems in knot theory are not known to fit in this dichotomy.


## NP-hard problems in knot theory

- Is knot equivalence NP-hard?


## NP-hard problems in knot theory

- Is knot equivalence NP-hard? We do not know.
- It is consistent with the state of the art that it can be solved in linear time.


## NP-hard problems in knot theory

- Is knot equivalence NP-hard? We do not know.
- It is consistent with the state of the art that it can be solved in linear time.
- Most problems in knot theory are very hard to compute in practice. Is any of them NP-hard?
- When I started working on these problems ten years ago, there were to my knowledge only two known computational hardness results in knot theory:
(1) Given a knot $K$ in a 3 -manifold $M$, is the genus of $K$ at most $g$ ? [Agol-Hass-Thurston '95]
(2) It is \#P-hard to compute [Jaeger, Vertigan, Welsh '90], or even approximate [Kuperberg '15] the Jones polynomial of a knot.
Since then, many new results, but still many open problems.


## Why should we care?

(1) NP-hardness traces a line between problems that can be solved in polynomial time and those that cannot.
(2) Some problems in knot theory are very likely not NP-hard:

## Unknot recognition

Input: A knot $K$ represented by a diagram.
Output: Is $K$ equivalent to the trivial knot?


- In NP $\cap$ co - NP [Hass-Lagarias-Pippenger '99], [Agol'02 $\rightarrow$ Lackenby '18].
- Actually, computing the genus is in NP $\cap c o$ - NP [Lackenby '21], even in a fixed 3-manifold [Lackenby-Yazdi '20]


## Some knot invariants

- Tri-colorability: Can I color my knot using three different colors and the following rules?

- More generally: does there exist a non-trivial homomorphism of $\pi_{1}\left(\mathbb{S}^{3} \backslash K\right)$ into a fixed finite group $G$ that sends a meridian to a fixed conjugacy class $c$ ?


## Theorem (Kuperberg-Samperton '21)

If $G$ is fixed, non-abelian and simple (for example $\mathcal{A}_{5}$ ), this problem is NP-hard. (More generally counting the number of representations is \#P-hard.)

- Polynomial invariants: Computing the Alexander polynomial of a knot can be done in polynomial-time, but computing/approximating the Jones polynomial is \#P-hard [Jaeger-Vertigan-Welsh '90, Kuperberg '15]. These are the only* known hard problems for classical knots. Other hardness results work with knots in 3-manifolds, or with links.


## Some previous NP-hardness results

- Knot genus in a 3-manifold [Agol-Hass-Thurston '05].
- Thurston norm of a link [Lackenby '17].



## Some previous NP-hardness results

In [dM-Rieck-Sedgwick-Tancer '21], we started from a nice similarity between Borromean rings and SAT clauses to show that the following problems are NP-hard:


$$
C=v_{1} \vee v_{2} \vee v_{3}
$$

## Some previous NP-hardness results

- Finding a sublink [Lackenby '17], finding a trivial sublink [Koenig-Tsvietkova'21],[dM-Rieck-Sedgwick-Tancer '21].

$$
\phi=(t \vee x \vee y) \wedge(\neg x \vee y \vee z)
$$



## Some previous NP-hardness results

- Unlinking number [Koenig-Tsvietkova'21],[dM-Rieck-Sedgwick-Tancer'21].



## Some previous NP-hardness results

- Four-ball Euler characteristic $\chi_{4}(L)$ [dM-Rieck-Sedgwick-Tancer'21].



## Some previous NP-hardness results

- Deciding whether a knot can be turned into a trivial diagram using at most $k$ Reidemeister moves [dM-Rieck-Sedgwick-Tancer '21].

$$
\Phi=\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee x_{4}\right) \wedge\left(x_{1} \vee \neg x_{3} \vee \neg x_{4}\right)
$$



## Computing the crossing number

## Crossing number

Input: A knot/link diagram $D$.
Output: Is the crossing number of the knot/link at most $k$ ?
Best known algorithm to decide whether the crossing number of a link $L$ is at most $k$ :
for $i=1 \ldots k$ do
for All the link diagrams $D$ with $i$ crossings do Test whether $D$ and $L$ are the same link.
end for
end for

## Marc Lackenby

"[This algorithm] is obviously not very efficient but it seems unlikely that there is any quicker way of determining a link's crossing number in general."

## Hardness of the crossing number

Theorem (Schaefer, Sedgwick, dM'20)
The crossing number problem for links is NP-hard.

## Hardness of the crossing number

## Theorem (Schaefer, Sedgwick, dM'20)

The crossing number problem for links is NP-hard.

- First reaction: of course it's NP-hard, there should be an easy reduction from the graph crossing number.
- Yes but not that easy: it is open whether the crossing number of a knot is NP-hard.


## A naive reduction

- The crossing number of a graph $G$ is the minimum number of edge crossings in a plane drawing of $G$.

- It is notoriously unwieldy, for example the exact values of the crossing numbers of complete graphs $K_{n}$ and complete bipartite graph $K_{m, n}$ are unknown.


## Theorem (Garey-Johnson '83)

Computing the crossing number of a graph is NP-hard.

## A naive reduction

## Theorem (Garey-Johnson '83)

Computing the crossing number of a graph is NP-hard.

- Transforming a graph into a link.

- But when changing the cyclic ordering around the vertex, the link gets all tangled up.
- We must prevent the components corresponding to vertices from stretching.


## The actual reduction

We reduce from a specific variant of the graph crossing number, where the cyclic orderings are fixed:

## Theorem (Muñoz-Unger-Vrt'o '02)

Determining the bipartite crossing number of a bipartite graph $G=(U \cup V, E)$ in which all vertices in $U$ have degree 4, all vertices in $V$ have degree 1 , and the order of the $V$-vertices along their line is fixed, is NP-complete.

which we transform into...


## Why does this work?

One direction is immediate: from a graph drawing with low crossing number we get a link diagram with low crossing number.

For the other direction, we want to prove that in any diagram of low crossing number, things are as we would expect:

- the frame is rigid and

- the only things moving are the red curves.


## Using linking numbers

Main tool: Linking numbers.

- With linking numbers, we can prove that this diagram of the frame is the unique one with a minimal number of crossings.

- Then the hope is that the placement of the frame forces other crossings (even those not forced by linking numbers).
- But adding the other gadgets may break the rigidity of the frame.


## Weighted crossings

- This is a common issue in reductions involving crossing numbers.
- We can gain rigidity by putting big weights: each edges has a weight $w_{e}$, and the weighted crossing number of $e$ and $f$ crossing is $w_{e} w_{f}$.
- This can be easily simulated by using multiple edges.

- In the setting of graphs, it is immediate that all the multiple edges will be drawn the same way in some crossing-minimal drawing.
- Big weights can enforce rigidity.


## Weighted knots

Likewise, we can use multiple copies of knot to represent weights:

$$
\bigcap \longrightarrow \bigcap \bigcap \bigcap)
$$

However:

- Self-crossings throw off the accounting, hence we use unknots in the reduction.

- We can not argue that in a crossing-minimal drawing, all the copies of a knot will be drawn the same way.



## Our solution

- We do use weighted knots, and choose weights wisely.
- When arguing that things look like we want them to look, we use a relaxed notion of equivalence.

Two links are parity-link equivalent if the parity of the linking number between pairs of components is the same in both crossings.


## Parity-link equivalence is simpler to handle

## Lemma

For any link $L$, let $D^{\prime}$ be a diagram with a minimum number of crossings of a link L' which is parity-link equivalent to $L$. Then no link component in $D^{\prime}$ has self-crossings.

## Proof:



## Working from a different link.

- The argument showing that the frame is rigid is only based on linking numbers!
So, if $L$ has a drawing with a low crossing number:
- We look at the crossing-minimal drawing $D$ of a link $L^{\prime}$ that is parity-link equivalent to our link $L$. It also has a low number of crossings.
- $L^{\prime}$ might be different from $L$, but it does not matter:
- There, the frame is rigid.
- Likewise, the only non-rigid pieces are the moving red curves.
- We can find a drawing of our original bipartite graph from $D$ with few crossings.
We also get NP-hardness for the minimal crossing number under other notions of equivalence: parity-link equivalence, linking-number equivalence, link-homotopy and link concordance.


## What next?

- How to adapt this to knots? Or links with a bounded number of components? Alternating knots might help but the weighting issue is problematic.
- Is it still hard for a fixed value of the crossing number? Note that for a fixed $k$, determining whether a graph has crossing number at most $k$ can be done in linear-time [Kawarabayashi-Reed'07].
- What about the bridge number? (minimum number of bridges to draw the knot)



## One more speculative slide

What is the computational complexity of knot problems where one forces to stay in the PL category with at most $k$ segments? For example:

- Complexity of the stick number (minimum number of segments to realize a knot)?
- Complexity of deciding whether two knots made of $k$ segments can be isotoped to each other using knots made of $k$ segments?
I would expect strong connections to the theory of linkages and the existential theory of the reals. In particular, is the space of realizations of a knot universal in the sense of Mnev?


## Open problem: Stuck geometric unknots, [Calvo '01]

Are there topological unknots which cannot be untangled geometrically in the sense above?

## One more speculative slide

What is the computational complexity of knot problems where one forces to stay in the PL category with at most $k$ segments? For example:

- Complexity of the stick number (minimum number of segments to realize a knot)?
- Complexity of deciding whether two knots made of $k$ segments can be isotoped to each other using knots made of $k$ segments?
I would expect strong connections to the theory of linkages and the existential theory of the reals. In particular, is the space of realizations of a knot universal in the sense of Mnev?


## Open problem: Stuck geometric unknots, [Calvo '01]

Are there topological unknots which cannot be untangled geometrically in the sense above?

> Thank you! Questions?

## Our original motivation: $\mathrm{EmBED}_{2 \rightarrow 3}$ and $\mathrm{EMBED}_{3 \rightarrow 3}$



This 3-manifold embeds into $\mathbb{S}^{3}$ if and only if $\Phi$ is satisfiable.
$\rightarrow$ Deciding whether a 3 or a 2-dimensional space embeds into $\mathbb{R}^{3}$ is
NP-hard.
Best algorithm runs in a tower of exponentials [Matoušek, Sedgwick, Tancer, Wagner '16].

