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Knot Theory

Knots
o A knot is a nce map K : ST — R3.

@ Two knots are equivalent if they are ambient isotopic, i.e., if there
exists a continuous deformation from one into the other without
crossings.

@ A link is a disjoint union of knots.
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Knot diagrams

Diagrams

@ A knot diagram is a 2D-projection of a knot where at every vertex, one
indicates which strand goes above and below.

@ The crossing number of a knot K is a minimum number of crossings over all
knot diagrams for K.
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Theorem (Reidemeister)

Two knot diagrams correspond to equivalent knots if and only if they can be
related by a sequence of Reidemeister moves.
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Knot equivalence

Knot equivalence

Input: Two knots K7 and K represented by diagrams.
Output: Is K equivalent to K5?

What is the best known algorithm for this problem?
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Knot equivalence

Knot equivalence

Input: Two knots K7 and K represented by diagrams.
Output: Is K equivalent to K5?

What is the best known algorithm for this problem?
@ Decidable [Haken'68, Hemion '79, Matveev '07].

@ Best bound on Reidemeister moves is from [Lackenby-Coward '14]:

2'2n1+n2 1
2 }height Mt where ¢ = 101000000,

@ [Kuperberg '19] provides an elementary algorithm, i.e., with a tower of
exponentials of constant size.
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Knot equivalence

Knot equivalence

Input: Two knots K7 and K represented by diagrams.
Output: Is K equivalent to K5?

What is the best known algorithm for this problem?
@ Decidable [Haken'68, Hemion '79, Matveev '07].

@ Best bound on Reidemeister moves is from [Lackenby-Coward '14]:

2'2n1+n2 1
2 }height Mt where ¢ = 101000000,

@ [Kuperberg '19] provides an elementary algorithm, i.e., with a tower of
exponentials of constant size.

This problem does not look easy. Perhaps one can prove that it is hard?
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The very basics of computational complexity |

@ A decision problem is in P (polynomial-time) if there exists an
algorithm solving instances of size n in time p(n), where p is a
polynomial.

@ A decision problem is in NP (non-deterministic polynomial-time) if

there exists an algorithm verifying positive instances of size n with a
hint of size h(n) in time p(n), where p and h are polynomial.

Example: Non-primality

One can easily verify that a number is non-prime when one is given its
prime factors as a hint.

@ A decision problem is in co-NP if its complement is in NP.

Example: Primality

Primality testing is in co-NP because of the previous example.
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The very basics of computational complexity

Standard conjectures
P % NP # co-NP.

@ A problem is NP-hard if any problem in NP reduces in polynomial
time to it. In particular, a problem being both in P (resp. co-NP)
and NP-hard would mean that P = NP (resp. co-NP=NP).

@ Rule of thumb in many parts of theoretical computer science (e.g.,
graph theory): every reasonable problem, except a few well-known
exceptions, is in P or is NP-hard (see for example the Feder-Vardi
conjecture [Bulatov, Zhuk '17])

@ Most problems in knot theory are not known to fit in this dichotomy.
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NP-hard problems in knot theory

@ Is knot equivalence NP-hard?
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NP-hard problems in knot theory

@ Is knot equivalence NP-hard? We do not know.

o It is consistent with the state of the art that it can be solved in linear
time.
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NP-hard problems in knot theory

@ Is knot equivalence NP-hard? We do not know.

o It is consistent with the state of the art that it can be solved in linear
time.

@ Most problems in knot theory are very hard to compute in practice. Is
any of them NP-hard?

@ When | started working on these problems ten years ago, there were
to my knowledge only two known computational hardness results in
knot theory:

@ Given a knot K in a 3-manifold M, is the genus of K at most g7
[Agol-Hass-Thurston '95]

@ It is #P-hard to compute [Jaeger, Vertigan, Welsh '90], or even
approximate [Kuperberg '15] the Jones polynomial of a knot.

Since then, many new results, but still many open problems.
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Why should we care?

@ NP-hardness traces a line between problems that can be solved in
polynomial time and those that cannot.

@ Some problems in knot theory are very likely not NP-hard:

Unknot recognition

Input: A knot K represented by a diagram.
Output: Is K equivalent to the trivial knot?
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@ In NP N co — NP [Hass-Lagarias-Pippenger '99], [Agol'02 — Lackenby '18].
@ Actually, computing the genus is in NP N co — NP [Lackenby '21], even
in a fixed 3-manifold [Lackenby-Yazdi '20]
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Some knot invariants

@ Tri-colorability: Can | color my knot using three different colors and
the following rules?
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@ More generally: does there exist a non-trivial homomorphism of
7T]_(S3 \ K) into a ﬁXed flnlte group G that sends a meridian to a fixed conjugacy class C?

Theorem (Kuperberg-Samperton '21)

If G is fixed, non-abelian and simple (for example As ), this problem is
NP-hard. (More generally counting the number of representations is #P-hard.)

@ Polynomial invariants: Computing the Alexander polynomial of a knot
can be done in polynomial-time, but computing/approximating the
Jones polynomial is # P-hard [Jaeger-Vertigan-Welsh '90, Kuperberg '15].

These are the only* known hard problems for classical knots. Other

hardness results work with knots in 3-manifolds, or with links.
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Some previous NP-hardness results

@ Knot genus in a 3-manifold [Agol-Hass-Thurston '05].

@ Thurston norm of a link [Lackenby '17].
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Some previous NP-hardness results

In [dM-Rieck-Sedgwick-Tancer '21], we started from a nice similarity between
Borromean rings and SAT clauses to show that the following problems are

NP-hard:
%—) C=wVwnVwy
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Some previous NP-hardness results

@ Finding a sublink [Lackenby '17], finding a trivial
sublink [Koenig-Tsvietkova'21],[dM-Rieck-Sedgwick-Tancer '21].
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Some previous NP-hardness results

@ Unlinking number [Koenig-Tsvietkova'21],[dM-Rieck-Sedgwick-Tancer'21].
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Some previous NP-hardness results

@ Four-ball Euler characteristic y4(L) [dM-Rieck-Sedgwick-Tancer'21].
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Some previous NP-hardness results

@ Deciding whether a knot can be turned into a trivial diagram using at
most k Reidemeister moves [dM-Rieck-Sedgwick-Tancer '21].
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Computing the crossing number

Crossing number

Input: A knot/link diagram D.
Output: Is the crossing number of the knot/link at most k?

Best known algorithm to decide whether the crossing number of a link L is
at most k:

fori=1...kdo

for All the link diagrams D with i crossings do
Test whether D and L are the same link.
end for
end for

Marc Lackenby

“[This algorithm] is obviously not very efficient but it seems unlikely that

there is any quicker way of determining a link’s crossing number in
general.”
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Hardness of the crossing number

Theorem (Schaefer, Sedgwick, dM'20)

The crossing number problem for links is NP-hard.
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Hardness of the crossing number

Theorem (Schaefer, Sedgwick, dM'20)

The crossing number problem for links is NP-hard.

o First reaction: of course it's NP-hard, there should be an easy
reduction from the graph crossing number.

@ Yes but not that easy: it is open whether the crossing number of a
knot is NP-hard.
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A naive reduction

@ The crossing number of a graph G is the minimum number of edge
crossings in a plane drawing of G.

@ It is notoriously unwieldy, for example the exact values of the crossing
numbers of complete graphs Kj, and complete bipartite graph Ky, »
are unknown.

Theorem (Garey-Johnson '83)
Computing the crossing number of a graph is NP-hard.
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A naive reduction

Theorem (Garey-Johnson '83)
Computing the crossing number of a graph is NP-hard.
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@ Transforming a graph into a link.
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@ But when changing the cyclic ordering around the vertex, the link
gets all tangled up.
@ We must prevent the components corresponding to vertices from

stretching.
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The actual reduction

We reduce from a specific variant of the graph crossing number, where the
cyclic orderings are fixed:

Theorem (Mufioz-Unger-Vrto '02)

Determining the bipartite crossing number of a bipartite graph
G = (UU V,E) in which all vertices in U have degree 4, all vertices in V

have degree 1, and the order of the V-vertices along their line is fixed, is
NP-complete.

U
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which we transform into...
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Why does this work?

One direction is immediate: from a graph drawing with low crossing
number we get a link diagram with low crossing number.

For the other direction, we want to prove that in any diagram of low
crossing number, things are as we would expect:

@ the frame is rigid and

@ the only things moving are the red curves.
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Using linking numbers

Main tool: Linking numbers.

@ With linking numbers, we can prove that this diagram of the frame is
the unique one with a minimal number of crossings.

@ Then the hope is that the placement of the frame forces other
crossings (even those not forced by linking numbers).

o But adding the other gadgets may break the rigidity of the frame.
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Weighted crossings

@ This is a common issue in reductions involving crossing numbers.

@ We can gain rigidity by putting big weights: each edges has a weight
We, and the weighted crossing number of e and f crossing is wewys.

@ This can be easily simulated by using multiple edges.

@ In the setting of graphs, it is immediate that all the multiple edges
will be drawn the same way in some crossing-minimal drawing.

@ Big weights can enforce rigidity.

29/36



Weighted knots

Likewise, we can use multiple copies of knot to represent weights:

000000

@ Self-crossings throw off the accounting, hence we use unknots in the

reduction. %

@ We can not argue that in a crossing-minimal drawing, all the copies of
a knot will be drawn the same way.
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Our solution

@ We do use weighted knots, and choose weights wisely.

@ When arguing that things look like we want them to look, we use a

relaxed notion of equivalence.

Two links are parity-link equivalent if the parity of the linking number
between pairs of components is the same in both crossings.

J
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Parity-link equivalence is simpler to handle

For any link L, let D’ be a diagram with a minimum number of crossings
of a link L' which is parity-link equivalent to L. Then no link component in
D’ has self-crossings.

Proof:

OO~ 0
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Working from a different link.

@ The argument showing that the frame is rigid is only based on linking
numbers!

So, if L has a drawing with a low crossing number:

@ We look at the crossing-minimal drawing D of a link L’ that is
parity-link equivalent to our link L. It also has a low number of
crossings.

@ L' might be different from L, but it does not matter:
@ There, the frame is rigid.
o Likewise, the only non-rigid pieces are the moving red curves.

@ We can find a drawing of our original bipartite graph from D with few
crossings.
We also get NP-hardness for the minimal crossing number under other
notions of equivalence: parity-link equivalence, linking-number
equivalence, link-homotopy and link concordance.
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What next?

@ How to adapt this to knots? Or links with a bounded number of
components? Alternating knots might help but the weighting issue is
problematic.

@ Is it still hard for a fixed value of the crossing number? Note that for
a fixed k, determining whether a graph has crossing number at most
k can be done in linear-time [Kawarabayashi-Reed'07].

e What about the bridge number? (minimum number of bridges to

S
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One more speculative slide

What is the computational complexity of knot problems where one forces
to stay in the PL category with at most k segments? For example:

e Complexity of the stick number (minimum number of segments to
realize a knot)?

o Complexity of deciding whether two knots made of k segments can be
isotoped to each other using knots made of k segments?

| would expect strong connections to the theory of linkages and the
existential theory of the reals. In particular, is the space of realizations of
a knot universal in the sense of Mnev?

Open problem: Stuck geometric unknots, [Calvo '01]

Are there topological unknots which cannot be untangled geometrically in
the sense above?
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One more speculative slide

What is the computational complexity of knot problems where one forces
to stay in the PL category with at most k segments? For example:

e Complexity of the stick number (minimum number of segments to
realize a knot)?

o Complexity of deciding whether two knots made of k segments can be
isotoped to each other using knots made of k segments?

| would expect strong connections to the theory of linkages and the
existential theory of the reals. In particular, is the space of realizations of
a knot universal in the sense of Mnev?

Open problem: Stuck geometric unknots, [Calvo '01]

Are there topological unknots which cannot be untangled geometrically in
the sense above?

Thank you! Questions?
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Our original motivation: EMBED,_,3 and EMBED3_,3

z 3/1-7( y
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This 3-manifold embeds into S* if and only if ® is satisfiable.
— Deciding whether a 3 or a 2-dimensional space embeds into R is
NP-hard.

Best algorithm runs in a tower of exponentials [Matousek, Sedgwick, Tancer,
Wagner '16].
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