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A map of complexity classes

P#P

NP

P
Algorithm in

O(poly(n)) time

when given a

’hint’ of size

O(poly′(n))

polynomial

hierarchy

...

#P

Input of
’size’ n

’Yes/No’ questions

Does my graph admit
a bipartite matching?

Does my graph admit
a Hamiltonian cycle?

’How many’ questions

How many bipartite matchings
does my graph admit?

How many Hamiltonian cycle
does my graph admit?

poly(n) time
algorithm with
a #P oracle

#P− hard

Alexander polynomial
Homology groups
Unknot recognition

3-sphere recognition

Knot genus in M3

coloured Jones polynomials JN (K)

Turaev-Viro invariants TVr

Toda’s theorem

matrix normalisation

computational
’difficulty’

Standard cpx: O(f (n)), e.g., O(2n)

Parameterized cpx: O(f ( k )× poly(n))

for some k, (ideally), k � n.

quantum invariants

normal surface approach

triangulation: n = #tetrahedra
knot diagram: n = #crossings

size of input n,
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Parameters

Size of input n, parameter k (≤ n), cpx O(f(k)× poly(n))

Best scenario: k is of topological nature, e.g.,

Theorem (M., Spreer ’16)

For any input triangulation T, of size n, of a manifold M, there is a

O(2β1 × n3)

time algorithm to compute the Turaev-Viro invariant TV4,1(M) (which is
#P-hard), where β1 = dimH1(M,Z/2Z).

- parameter independent of triangulation (the “presentation”)

- the problem becomes P for all manifolds of bounded β1

- unfortunately hard to generalise.
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Combinatorial parameters

Size of input n, parameter k (≤ n), cpx O(f(k)× poly(n))
More systematic: k is of combinatorial nature, e.g., k measures the
sparsity of a triangulation/knot diagram called width.

Theorem (Burton, M., Spreer ’15)

For a triangulation of a 3-manifold M, with n tetrahedra and width w,
the Turaev-Viro invariant TVr,q (or BWTV-inv.) can be computed in

rO(w) × poly(n) operations.

Theorem (M. ’20)

For a knot diagram of a knot K, with n crossings and width w, the
coloured Jones polynomial JN(K) (or RT-inv.) can be computed in:

NO(w) × poly(n) operations.
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Carving-width of a graph

For planar graph (but can be defined on general graphs):

Graph vertices ↔ Leaves of bin. tree | Tree edge ⇒ graph cut

- System of Jordan curves, cutting the graph transversally,

- The width is the maximal number of intersections between a
Jordan curve and the graph edges.

The smallest possible width is the carving-width cw.

Very close to graph tree-width.
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Carving-width of a manifold/knot

A triangulation
induces a 4-valent
graph:

A knot diagram gives
a 4-valent planar
graph.

The (carving-)width cw(M)/ cw(K) of a manifold M/knot K is the
minimal (carving-)width over all of its triangulations/diagrams.
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A reasonable strategy

poly/NP/sub-exp. ?−−−−−−−−−→ poly/FPT in width−−−−−−−−−→

Any diagram of
a knot K,
• n crossings,
• arbitr. width.



Diagram of K,
• poly(n) crossings,
• width f(cw(K))
“close to opt”.


Computation of a
(close to optimal)
width-decompostion
g ◦ f(cw(K)).

︸ ︷︷ ︸
Can we bound the optimal width of a presenta-
tion of a knot/3-manifold by a more topological
property?

FPT algorithm in the width
O(h(cw(k))× poly(n)) for
a “hard” computation (e.g.,
JN(K)).

Yes
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Some connections with topology

Many 3-manifolds/knots have cste width: SFS, 2-bridge knots, etc.

Theorem (Huszár, Spreer ’19 | H.,S., Wagner ’18 | M., Purcell ’19)

Let M be a closed, orientable 3-manifold of Heegaard genus g(M), then:

cw(M) ≤ c1 · g(M)

If M is hyperbolic of volume vol(M), then cw ≤ c2 · vol(M) .

If M is non-Haken, then: g(M) ≤ c3 · cw(M) ,

⇒ ∃(Mi)i≥0 with unbounded cw(Mi). [Agol ’02]

Theorem (de Mesmay, Purcell, Schleimer, Sedgwick ’19)

There are families of knots, such as torus knots, with unbounded width.
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Overall strategy

poly/NP/sub-exp. ?−−−−−−−−−→ poly/FPT in width−−−−−−−−−→
Any diagram of
a knot K,
• n crossings,
• arbitr. width.


Diagram of K,
• poly(n) crossings,
• width f(cw(K))
“close to opt”.


Computation of a
(close to optimal)
width-decompostion
g ◦ f(cw(K)).

︸ ︷︷ ︸

Combine with a bound of the type “cw(M) ≤
c × vol(M)” for hyperbolic manifolds to get
polynomial time algorithms for all hyperbolic
manifolds of bounded volume for otherwise
hard problems.

FPT algorithm in the width
O(h(cw(k))× poly(n)) for
a “hard” computation (e.g.,
JN(K)).

Thank you!
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Appendix:
Dynamic programming
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Penrose functor: Diagram → (algebraic) invariant
[Sketch of construction] [Reshetikhin,Turaev]

W1 Wm

V1 Vn

· · ·

· · ·

f

Wm+1 Wq

Vn+1 Vp

· · ·

· · ·

g
.
= f ⊗ g

W1 Wq

V1

· · ·

Vp

· · ·

.
= idV :V → VV

.
= idV ∗V

cV,W :V ⊗W →W ⊗ V
V W

W V

θV :V → VV V dv:V
∗ ⊗ V → 1

V bv:1→ V ⊗ V ∗

WV

f :V1 ⊗ . . .⊗ Vn →W1 ⊗ . . .⊗Wm

W1 Wm

V1 Vn
· · ·

· · ·

U1 U`
· · ·

f

g
.
=

U1 U`
· · ·

W1 Wm

· · ·

g ◦ f

f ⊗ g:V1 ⊗ . . .⊗ Vp →W1 ⊗ . . .Wq g ◦ f :U1 ⊗ . . .⊗ U`
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Leaves of the carving decomposition

U∗ ⊗ U ⊗ V ⊗ V ∗

U∗ ⊗ V ⊗ U ⊗ V ∗

U∗ ⊗ U ⊗ V ⊗ V ∗

1

V

1

U

Isotope the link to get morphisms 1 → W:

cV,U

V U

bVbU∗ bVbU∗

V U
c−1
V,U

V

bV ∗

V

bV ∗

θV θ−1
V

- Four possibilities: two crossings, two twists.
- Constant number of matrix multiplications. 13



Merging morphisms at tree nodes I

Isotope the link to get morphisms 1 → W:

e2e1
3

2
1

a
b

c
fe1 fe2

1
2

3 a
bc

e2e1 fe1 fe2

a
bc

a

b
c

2
1

3
4

4
3

1
2

e2e1

b1

3

2

a

c

d
4

fe1 fe2

4
1

2 a
b

cd
3

14



Merging morphisms at tree nodes II

VU

f .
=

U

f

V
V1V2V3VjU1U2Ui · · · · · ·

· · ·

· · ·

U = Ui ⊗ . . . ⊗ U1 V = Vj ⊗ . . . ⊗ V1

f

.
=

e2e1
3

2
1

a
b

c
fe1 fe2

1
2

3 a
bc

Slide strands under by isotopy −→ factorise with O(cw2) additional
matrices. 15



Merging morphisms at tree nodes III

g2

g1

V1 Vi

WjW1

· · ·

Uk

U1

· · · · · ·
· · ·

- i+ j ≤ cw,

- can assume k ≤ cw /2.

Operation (k times):

f
· · ·

V
U U

h
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V1 Vi

WjW1

· · ·

Uk

U1

· · · · · ·
· · ·

- i+ j ≤ cw,

- can assume k ≤ cw /2.

Operation (k times):

f
· · ·

V
U U

h

Next → factorise the “Ui-bridge”.
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Merging morphisms at tree nodes III
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g1

V1 Vi
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· · ·
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· · ·

U1
Uk

U1

Uk
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Operation:

g

f
V

W

U
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· · ·
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Uk

U1

Uk
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g

f
V

W

U
h
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· · ·
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V1 Vi

· · ·

· · · · · ·h
U1

Uk

dU1⊗...⊗Uk

h2h

· · ·
Wj

· · ·U1 Uk

· · ·
W1

Operation:

f

g
V

U W

h

Next → factorise h and g1.

16



Merging morphisms at tree nodes III

V1 Vi

· · · · · ·Uk

U1

Uk h2g2

· · ·
WjW1

fe

· · ·

16



Complexity

g2

g1

V1 Vi

WjW1

· · ·

Uk

U1

· · · · · ·
· · · - i+ j ≤ cw,

- can assume k ≤ cw /2.

- All op. are sparse matrix multiplications, of type: id ⊗M⊗ id.
- Matrices are all of size NO(cw) × NO(cw), as morphisms of type

U1⊗. . .⊗UO(cw) → V1⊗. . .⊗VO(cw), with dimUi,dim Vj ≤ N.

- Can control the arithmetic complexity of operations in the ring R

(e.g., R = Z[q
1
2 , q−

1
2 ]).

17



Complexity

Theorem (M. ’21)

Fix a strict ribbon category C of Z[X, X−1]-modules, and free modules
V1, . . . , Vm ∈ C of dimension bounded by N. The problem:

Quantum invariant at C,V1, . . . , Vm:
Input: m-components link L, presented by a diagram D(L),
Output: quantum invariant JCL (V1, . . . , Vm)

can be solved in

- O(poly(n) · N 3
2

cw) machine operations, with

- O(Ncw + n) memory words,

where n and cw are respectively the number of crossings and the
carving-width of the diagram D(L).

NB: cw = O(
√
n) ⇒ sub-exponential algo.

18



Experiments

• Beautiful and difficult knot
(weaving knot W(3, 16)):

• Exciting conjecture
(volume conjecture):

lim
N→+∞

2π log
∣∣ JN(K)(e2πi/N)

∣∣
N︸ ︷︷ ︸

limit behaviour of coloured Jones polynomials

= vol(S3 \ K)︸ ︷︷ ︸
hyperbolic volume

of the knot

.

• Very early experiments
(some convergence of the
sequence above):
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