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A map of complexity classes

Toda’s theorem

coloured Jones polynomials Jy (K)

#P

quantum invariants

Turaev-Viro invariants TV .

—— for some k, (ideally

Standard cpx: O(f(n)), e.g., O(2")
Parameterized cpx: O(f( . ) X poly(n))

k< on.

/ Knot genus in M?

when given a
’hint’ of size
O(poly’(n))

\ /

Algorithm i

\ /

O(poly(n),

"Yes/No™ questions

a bipartite matching?

a Hamiltonian cycle?

Does my graph admit

Does my graph admit

"How many’ questions
How many bipartite matchings
does my graph admit?

How many Hamiltonian cycle
does my graph admit?

3-sphere recognition

normal surface approach

Unknot recognition
Homology groups
Alexander polynomial

} matrix normalisation

size of input n,
triangulation: n = #tetrahedra
knot diagram: n = #crossings
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Parameters

Size of inputn,  parameter k (< n),  cpx O(f(k) x poly(n))
Best scenario: k is of topological nature, e.g.,
Theorem (M., Spreer '16)

For any input triangulation T, of size n, of a manifold M, there is a
O(2% x n%)

time algorithm to compute the Turaev-Viro invariant TVy 1(M) (which is
#P-hard), where 5y = dim Hy(M, Z/27).

- parameter independent of triangulation (the “presentation”)
- the problem becomes P for all manifolds of bounded 3;

- unfortunately hard to generalise.
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Combinatorial parameters

Size of input n,  parameter k (< n),  cpx O(f(k) x poly(n))

More systematic: k is of combinatorial nature, e.g., kK measures the
sparsity of a triangulation/knot diagram called width.

Theorem (Burton, M., Spreer '15)
For a triangulation of a 3-manifold M, with n tetrahedra and width w,

the Turaev-Viro invariant TV, 4 (or BWTV-inv.) can be computed in

) % poly(n) operations.

Theorem (M. ’20)

For a knot diagram of a knot K, with n crossings and width w, the
coloured Jones polynomial Jn(K) (or RT-inv.) can be computed in:

NOW) 5 poly(n) operations.



Carving-width of a graph

For planar graph (but can be defined on general graphs):

Graph vertices <+ Leaves of bin. tree | Tree edge = graph cut

- System of Jordan curves, cutting the graph transversally,

- The width is the maximal number of intersections between a
Jordan curve and the graph edges.

The smallest possible width is the carving-width cw.



Carving-width of a graph

For planar graph (but can be defined on general graphs):

Graph vertices <+ Leaves of bin. tree | Tree edge = graph cut

- System of Jordan curves, cutting the graph transversally,

- The width is the maximal number of intersections between a
Jordan curve and the graph edges.

The smallest possible width is the carving-width cw.

Very close to graph tree-width.



Carving-width of a manifold/knot

A triangulation
induces a 4-valent
graph:

A knot diagram gives
a 4-valent planar

graph. Q /

The (carving-)width cw(M)/ cw(K) of a manifold M/knot K is the
minimal (carving-)width over all of its triangulations/diagrams.
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Diagram of K, Computation of a
e poly(n) crossings, (close to optimal)
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FPT algorithm in the width

Can we bound the optimal width of a presenta- O(h(ew(k)) x poly(n)) for

tion of a knot/3-manifold by a more topological

property?

a “hard” computation (e.g.,

In(K)).

Yes
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Some connections with topology

Many 3-manifolds/knots have cste width: SFS, 2-bridge knots, etc.
Theorem (Huszar, Spreer 19 | H.,S., Wagner "18 | M., Purcell '19)
Let M be a closed, orientable 3-manifold of Heegaard genus g(M), then:

|ew(M) < c1-g(M)]

If M is hyperbolic of volume vol(M), then ’ cw < cg - vol(M) ‘

If M is non-Haken, then: ’ g(M) < c3 - cw(M) L
= 3(M;)i>0 with unbounded cw(M;).  [Agol 02]

Theorem (de Mesmay, Purcell, Schleimer, Sedgwick "19)

There are families of knots, such as torus knots, with unbounded width.
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fReVI®..QV, W ®... W,

Penrose functor: Diagram — (algebraic) invariant
[Sketch of construction] [Reshetikhin, Turaev]

v e W
AN
.A\/‘g 1% i = idy: VoV oV f = idy-
74 ' v AV eV =1
,Vi VP vy (Y diViaV—
q WV v bl vev:

U K evw:VeW-sweV
vV ow
W,



Leaves of the carving decomposition

Isotope the link to get morphisms 1 — W

V. u VU Vo,
cv.u vy kﬁ) v
by by by- by by- by~

- Four possibilities: two crossings, two twists.
- Constant number of matrix multiplications.

T~




Merging morphisms at tree nodes |

Isotope the link to get morphisms 1 — W

3 C a
(e )y——(e2) i e A

2 42I1 c a
ai ) [T




Merging morphisms at tree nodes Il

o Id , a . 5| 2 0 c b ~
€1 €2 o | fel . f€2
I ‘

. )
. Uf v . ’,... fp...ng

Slide strands under by isotopy — factorise with O(cw?) additional

matrices. 15




Merging morphisms at tree nodes Il

-it+j<cw,

- can assume k < cw /2.
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Merging morphisms at tree nodes Il

-i+j<cw,

m - can assume k < cw /2.

‘ ‘ Operation (k times):

g1 v

Next — factorise the “U;-bridge”.

16



Merging morphisms at tree nodes Il

Vi v W Wi
di ..U,
Ulv,,,ka UkAmAUl
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Merging morphisms at tree nodes Il

iV W W
di ..U,
Ulv,,,ka UkAmAUl
g2
g1

Next — factorise dy, @...gu, and ga.

Operation:

16



Merging morphisms at tree nodes Il

U:Y ... YU

g1




Merging morphisms at tree nodes Il

<
=
—_
=

0¥ ... YU,

g1

Next — factorise h and g;.

Operation:

U

W

16



Merging morphisms at tree nodes Il




Complexity

wW;

-i+j<cw,

- can assume k < cw /2.

- All op. are sparse matrix multiplications, of type: id ® M ® id.
- Matrices are all of size NO(%) x NO(W) a5 morphisms of type

Ui®.. -®UO(CW) - Vi®.. '®VO(CW)> with dim Ui,dim\/j <N.

- Can control the arithmetic complexity of operations in the ring R

(e.g. R =2[q%,q" ).



Complexity

Theorem (M. ’21)

Fix a strict ribbon category C of Z[X,X~!]-modules, and free modules
Vi,...,Vmn € C of dimension bounded by N. The problem:

Quantum invariantat C, V4, ..., Vp:
Input: m-components link L, presented by a diagram D(L),
Output: quantum invariant JS (V1,. .., Vi)

can be solved in
- O(poly(n) - N2 “") machine operations, with
- O(N“Y + n) memory words,

where n and cw are respectively the number of crossings and the
carving-width of the diagram D(L).

NB: cw = O(y/n) = sub-exponential algo.



e Beautiful and difficult knot
(weaving knot W(3, 16))

e Exciting conjecture
(volume conjecture):

e Very early experiments
(some convergence of the
sequence above):

Experiments

_ 2rlog | n(K)(€N) | ,

lim = vol(s” \ K)
N—+o00 N N———
limit behaviour of coloured Jones polynomials hyperbolic volume

of the knot




