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Knots

Knot :
A knot is a tame embedding S1 → S3 considered up to continuous
deformation (ambient isotopy).

Natural algorithmic questions :
• Is a given knot equivalent to the trivial one ? (NP and

co-NP)

• Are two given knots equivalent ?
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"Width" invariant of knots

Aim to measure some notion of "width" on knots.

Examples of width invariants :
• Trunk : Minimal number among linear sweepouts of the

maximal number of intersections between the knot and a
plane (or a sphere).

• Bridge number : Minimal number of trivial arcs on a sphere
that "splits" the knot.
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Treewidth on knots

Aim to measure "how close" a knot is to a tree.

A diagram of a knot is a 4-valent graph.

Diagrammatic treewidth of a knot K :
It is the minimum treewidth of a diagram of K .
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Treewidth of a graph
Aim to measure "how close" a graph is to a tree.
Treewidth of a graph G :
Maximum size of a bag in a tree decomposition of G .

In a tree decomposition :
• Each vertex is in a bag
• Each pair of edge

extremities is in a bag
• Bags containing a fixed

vertex create a subtree
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Treewidth of a graph
Small treewidth :

High treewidth :
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Why is treewidth interesting?

• Key tool for dynamic programming on graphs.
For example: Jones polynomial, Kauffman polynomial [J. A.
Makowsky and J. P. Mariño, 2003], HOMFLY-PT polynomial
[B. A. Burton, 2018], and quantum invariants [C. Maria,
2019] are efficiently computable on small treewidth diagrams
of knots.

• It plays a major role in the graph minor theory from
Robertson and Seymour.

• Occurs naturally in other areas:
For example: 3-manifolds [K. Huszár and J. Spreer, 2019],
lower bounds distortion on knots...
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Back to knots

Knots always have diagrams with high treewidth.

Question from [J. A. Makowsky and J. P. Mariño., The
parametrized complexity of knot polynomials, 2003] :
Are there knots for which all diagrams have high treewidth ?
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Back to knots
Theorem [A. De Mesmay, J. Purcell, S. Schleimer, and E.
Sedgwick,On the tree-width of knot diagrams., 2019]:
Let Tp,q be a torus knot. Then tw(Tp,q) = Ω(min(p, q)).

Towards a 3D definition:
The proof uses a width notion generalising carving width
(treewidth equivalent) on knots, using multiple Heegaard splittings.

My goal:
Define a width invariant on knots generalising branchwidth:
definition stemming from structural graph theory tailored to
proving lower bounds.
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Branchwidth definition
Branchwidth is another equivalent of treewidth : 2

3 tw ≤ bw ≤ tw .
Branchwidth of a Graph :
T is a trivalent tree and 𝜙 : E (G) → L(T ) is a bijection.

bw(G) = min
(T ,𝜙) ∈BD(G)

max
e∈T

|𝜕𝜙−1(L(T1)) |

Branchwidth can be lower bounded through its dual problem:
existence of a tangle.
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Tangle on graphs
Tangle definition
A tangle of order k, noted T ⊂ P(E )is a
collection of subsets of E ("small sides") such
that :

• ∀A ∈ T , 𝜕A < k, sets in the tangle have
boundary less than k.

• For all A,B ∈ P(E )2, if (A,B) is a separation
of order less than k, T contains A or B.

• ∀A ∈ P(E ),∀B ∈ T ,A ⊂ B and
𝜕A < k ⇒ A ∈ T . Small sides are consistent.

• ∀A,B,C ∈ P(E )3,A t B t C = E
⇒ {A,B,C } ⊄ T . No three small sides can
cover the whole space.

• ∀e ∈ E ,E r {e} ∉ T . A single edge is small.
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Obstruction

A branch decomposition of width 3 implies the impossibility for a
tangle of order 3.
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Branchwidth definition

A double bubble : two spheres that intersect on a single disk.
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Branchwidth definition

A branch-decomposition or sweep of S3 is a continuous map
f : S3 → T where T is a trivalent tree such that :

f −1 :


leaf ↦→ point
vertex ↦→ double bubble

point interior to an edge ↦→ sphere

Branchwidth
The branchwidth of K written bw(K ) is :

bw(K ) = inf
f

sup
e∈E (T ) ,x ∈e̊

|f −1(x ) ∩ K |.
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Bubble tangle on knots
Bubble tangle
Let K be a knot, tangle of order n, noted T is a collection of
closed balls of S3 such that:

• All subsets of T have less than n intersections with K on their
boundaries.

• For any spheres S of S3, if |S ∩ K | < n then a component of
S3 r S is in T .

• For any three closed balls B1,B2,B3 that induces a double
bubble, not all three of B1,B2,B3 are in T .

• T contains trivial balls:

15 / 19



Introduction Treewidth Branchwidth on graphs Branchwidth on knots Conclusion

Results

Theorem 1
If there exists a bubble tangle of order n on K then bw(K ) ≥ n.

Theorem 2
Let n be the maximal order of a bubble tangle on K . Then
bw(K ) = n.
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Distortion and representativity

Representativity
If K ↩→ Σ ↩→ S3, the representativity of K on Σ is the minimum
number of intersection between a non contractible, compressible
curve on Σ and K .

Distortion
The distortion of K ↩→ R3 is defined as 𝛿(K ) = sup

x ,y ∈K

dK (x ,y )
d
R3 (x ,y ) .

Pardon showed that representativity of torus knots lower bound
their distortion [Pardon, 2011].

17 / 19



Introduction Treewidth Branchwidth on graphs Branchwidth on knots Conclusion

Distortion and representativity

Representativity
If K ↩→ Σ ↩→ S3, the representativity of K on Σ is the minimum
number of intersection between a non contractible, compressible
curve on Σ and K .

Distortion
The distortion of K ↩→ R3 is defined as 𝛿(K ) = sup

x ,y ∈K

dK (x ,y )
d
R3 (x ,y ) .

Pardon showed that representativity of torus knots lower bound
their distortion [Pardon, 2011].

17 / 19



Introduction Treewidth Branchwidth on graphs Branchwidth on knots Conclusion

Bubble tangle from representativity
Generalising the work of [Pardon, 2011],

Theorem 3
Let K be a knot of representativity n on a surface Σ. Then there
exist a bubble tangle of order c × n (where c ∈ [ 1

2 ,
4
3 ]).

Corollary
Torus knots have high treewidth.
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Conclusion

Results:
• Branchwidth is a width invariant that can be defined on knots

and generalises the notion from structural graph theory.
• It can be easily lower bounded through the dual problem:

bubble tangle.
• These obstructions can arise from representativity.
• Extends naturally to spatial graphs

Thank you for listening !
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Annexe

Removing an inessential curve from S.
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Annexe

Transformation from a double bubble to S ′

Evolution of two circles of St ∩ M when t grows.
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Annexe

Diagram

T9,7 and one of its graph.
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