Tree-like width of knots and obstructions.

Corentin LUNEL

Joint work with Arnaud de Mesmay.
Université Gustave Eiffel, LIGM

Knots

Knot:
A knot is a tame embedding $\mathbb{S}^{1} \rightarrow \mathbb{S}^{3}$ considered up to continuous deformation (ambient isotopy).

Natural algorithmic questions:

- Is a given knot equivalent to the trivial one ? (NP and co-NP)

Knots

Knot:
A knot is a tame embedding $\mathbb{S}^{1} \rightarrow \mathbb{S}^{3}$ considered up to continuous deformation (ambient isotopy).

Natural algorithmic questions:

- Is a given knot equivalent to the trivial one ? (NP and co-NP)
- Are two given knots equivalent ?

"Width" invariant of knots

Aim to measure some notion of "width" on knots.

Examples of width invariants :

- Trunk: Minimal number among linear sweepouts of the maximal number of intersections between the knot and a plane (or a sphere).

- Bridge number: Minimal number of trivial arcs on a sphere that "splits" the knot.

Treewidth on knots

Aim to measure "how close" a knot is to a tree.

A diagram of a knot is a 4-valent graph.
Diagrammatic treewidth of a knot K :
It is the minimum treewidth of a diagram of K.

Treewidth of a graph

Aim to measure "how close" a graph is to a tree.
Treewidth of a graph G :
Maximum size of a bag in a tree decomposition of G.

In a tree decomposition :

- Each vertex is in a bag
- Each pair of edge extremities is in a bag
- Bags containing a fixed vertex create a subtree

Treewidth of a graph

Small treewidth :

High treewidth :

Why is treewidth interesting?

- Key tool for dynamic programming on graphs. For example: Jones polynomial, Kauffman polynomial [J. A. Makowsky and J. P. Mariño, 2003], HOMFLY-PT polynomial [B. A. Burton, 2018], and quantum invariants [C. Maria, 2019] are efficiently computable on small treewidth diagrams of knots.

Why is treewidth interesting?

- Key tool for dynamic programming on graphs. For example: Jones polynomial, Kauffman polynomial [J. A. Makowsky and J. P. Mariño, 2003], HOMFLY-PT polynomial [B. A. Burton, 2018], and quantum invariants [C. Maria, 2019] are efficiently computable on small treewidth diagrams of knots.
- It plays a major role in the graph minor theory from Robertson and Seymour.
- Occurs naturally in other areas:

For example: 3-manifolds [K. Huszár and J. Spreer, 2019], lower bounds distortion on knots...

Back to knots

Knots always have diagrams with high treewidth.

Back to knots

Knots always have diagrams with high treewidth.

Question from [J. A. Makowsky and J. P. Mariño., The parametrized complexity of knot polynomials, 2003] :
Are there knots for which all diagrams have high treewidth ?

Back to knots

Theorem [A. De Mesmay, J. Purcell, S. Schleimer, and E. Sedgwick, On the tree-width of knot diagrams., 2019]:
Let $T_{p, q}$ be a torus knot. Then $\operatorname{tw}\left(T_{p, q}\right)=\Omega(\min (p, q))$.

Towards a 3D definition:
The proof uses a width notion generalising carving width (treewidth equivalent) on knots, using multiple Heegaard splittings.

Back to knots

Theorem [A. De Mesmay, J. Purcell, S. Schleimer, and E. Sedgwick, On the tree-width of knot diagrams., 2019]:
Let $T_{p, q}$ be a torus knot. Then $\operatorname{tw}\left(T_{p, q}\right)=\Omega(\min (p, q))$.

Towards a 3D definition:
The proof uses a width notion generalising carving width (treewidth equivalent) on knots, using multiple Heegaard splittings.
My goal:
Define a width invariant on knots generalising branchwidth: definition stemming from structural graph theory tailored to proving lower bounds.

Branchwidth definition

Branchwidth is another equivalent of treewidth : $\frac{2}{3} t w \leq b w \leq t w$. Branchwidth of a Graph :
T is a trivalent tree and $\phi: E(G) \rightarrow L(T)$ is a bijection.

$$
\operatorname{bw}(G)=\min _{(T, \phi) \in \operatorname{BD}(G)} \max _{e \in T}\left|\partial \phi^{-1}\left(L\left(T_{1}\right)\right)\right|
$$

Branchwidth definition

Branchwidth is another equivalent of treewidth : $\frac{2}{3} t w \leq b w \leq t w$. Branchwidth of a Graph :
T is a trivalent tree and $\phi: E(G) \rightarrow L(T)$ is a bijection.

$$
\operatorname{bw}(G)=\min _{(T, \phi) \in \operatorname{BD}(G)} \max _{e \in T}\left|\partial \phi^{-1}\left(L\left(T_{1}\right)\right)\right|
$$

Branchwidth can be lower bounded through its dual problem: existence of a tangle.

Tangle on graphs

Tangle definition

A tangle of order k, noted $\mathcal{T} \subset \mathcal{P}(E)$ is a collection of subsets of E ("small sides") such that:

- $\forall A \in \mathcal{T}, \partial A<k$, sets in the tangle have boundary less than k.
- For all $A, B \in \mathcal{P}(E)^{2}$, if (A, B) is a separation of order less than k, \mathcal{T} contains A or B.
- $\forall A \in \mathcal{P}(E), \forall B \in \mathcal{T}, A \subset B$ and $\partial A<k \Rightarrow A \in \mathcal{T}$. Small sides are consistent.
- $\forall A, B, C \in \mathcal{P}(E)^{3}, A \sqcup B \sqcup C=E$ $\Rightarrow\{A, B, C\} \not \subset \mathcal{T}$. No three small sides can cover the whole space.

- $\forall e \in E, E \backslash\{e\} \notin \mathcal{T}$. A single edge is small.

Obstruction

A branch decomposition of width 3 implies the impossibility for a tangle of order 3.

Branchwidth definition

A double bubble : two spheres that intersect on a single disk.

Branchwidth definition

A branch-decomposition or sweep of \mathbb{S}^{3} is a continuous map $f: \mathbb{S}^{3} \rightarrow T$ where T is a trivalent tree such that :

$$
f^{-1}:\left\{\begin{array}{cl}
\text { leaf } & \mapsto \text { point } \\
\text { vertex } & \mapsto \text { double bubble } \\
\text { point interior to an edge } & \mapsto \text { sphere }
\end{array}\right.
$$

Branchwidth definition

A branch-decomposition or sweep of \mathbb{S}^{3} is a continuous map $f: \mathbb{S}^{3} \rightarrow T$ where T is a trivalent tree such that :

$$
f^{-1}:\left\{\begin{array}{cl}
\text { leaf } & \mapsto \text { point } \\
\text { vertex } & \mapsto \text { double bubble } \\
\text { point interior to an edge } & \mapsto \text { sphere }
\end{array}\right.
$$

Branchwidth
The branchwidth of K written $\mathbf{b w}(K)$ is:

$$
\operatorname{bw}(K)=\inf _{f} \sup _{e \in E(T), x \in \stackrel{e}{e}}\left|f^{-1}(x) \cap K\right| .
$$

Bubble tangle on knots

Bubble tangle
Let K be a knot, tangle of order n, noted \mathcal{T} is a collection of closed balls of \mathbb{S}^{3} such that:

- All subsets of \mathcal{T} have less than n intersections with K on their boundaries.
- For any spheres S of \mathbb{S}^{3}, if $|S \cap K|<n$ then a component of $\mathbb{S}^{3} \backslash S$ is in \mathcal{T}.
- For any three closed balls B_{1}, B_{2}, B_{3} that induces a double bubble, not all three of B_{1}, B_{2}, B_{3} are in \mathcal{T}.
- T contains trivial balls:

Results

Theorem 1
If there exists a bubble tangle of order n on K then $b w(K) \geq n$.

Results

Theorem 1
If there exists a bubble tangle of order n on K then $b w(K) \geq n$.
Theorem 2
Let n be the maximal order of a bubble tangle on K. Then $\operatorname{bw}(K)=n$.

Distortion and representativity

Representativity

If $K \hookrightarrow \Sigma \hookrightarrow \mathbb{S}^{3}$, the representativity of K on Σ is the minimum number of intersection between a non contractible, compressible curve on Σ and K.

Distortion and representativity

Representativity

If $K \hookrightarrow \Sigma \hookrightarrow \mathbb{S}^{3}$, the representativity of K on Σ is the minimum number of intersection between a non contractible, compressible curve on Σ and K.

Distortion

The distortion of $K \hookrightarrow \mathbb{R}^{3}$ is defined as $\delta(K)=\sup _{x, y \in K} \frac{d_{K}(x, y)}{d_{\mathbb{R}^{3}}(x, y)}$.
Pardon showed that representativity of torus knots lower bound their distortion [Pardon, 2011].

Bubble tangle from representativity

Generalising the work of [Pardon, 2011],
Theorem 3
Let K be a knot of representativity n on a surface Σ. Then there exist a bubble tangle of order $c \times n$ (where $\left.c \in\left[\frac{1}{2}, \frac{4}{3}\right]\right)$.

Corollary
Torus knots have high treewidth.

Conclusion

Results:

- Branchwidth is a width invariant that can be defined on knots and generalises the notion from structural graph theory.
- It can be easily lower bounded through the dual problem: bubble tangle.
- These obstructions can arise from representativity.
- Extends naturally to spatial graphs

Conclusion

Results:

- Branchwidth is a width invariant that can be defined on knots and generalises the notion from structural graph theory.
- It can be easily lower bounded through the dual problem: bubble tangle.
- These obstructions can arise from representativity.
- Extends naturally to spatial graphs

Thank you for listening !

Removing an inessential curve from S.

Transformation from a double bubble to S^{\prime}

Evolution of two circles of $S_{t} \cap M$ when t grows.

Diagram

$T_{9,7}$ and one of its graph.

